

*Corresponding author email address: zmmohamadi@gmail.com
 DOI: 10.22034/ISS.2024.7784.1009

42

Management Science and Information Technology

MSIT
2024, Volume 1, Issue 1, pp. 42-56

ISSN-Print: Pending

ISSN-Online: Pending

https://msit.refconf.com

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible

Manufacturing Systems by a Genetic Algorithm

Hamid Dadashi a, Zohreh Molamohamadi a* and Abolfazl Mirzazadeh a

a Department of Industrial Engineering, Kharazmi University, Tehran, Iran

Abstract

This paper deals with the Tool Switching Problem (ToSP), a famous problem in operations research. The simple ToSP

includes finding a sequence of products and tool loading on a machine with the objective of minimizing the total

number of tool switches. This paper presents a new multi-objective model for the ToSP, in which unlike the previous

studies, the multi job tools have been considered (i.e., each tool can perform several tasks or jobs). This new model

determines a product sequence and tool assigning for each stage that optimizes three objectives, namely 1) minimizing

the total number of tool switches, 2) minimizing the overuse of tools per stage, and 3) balancing the tool usage. It is

known that the ToSP is an NP-hard one, which is so difficult to be optimally solved in a reasonable computational

time for large size problems. Therefore, a meta-heuristic, based on genetic algorithm (GA), is proposed in this study

to solve such a hard problem. Moreover, a new tool loading algorithm is used to help the proposed GA related to the

machine loading. Finally, the related results and conclusion are presented and discussed. The results of the numerical

examples represented that the obtained results by GA are 3.5%. far from the optimum solutions found by the Branch-

and-bound method.

Keywords: Tool switches; Flexible machine; Multi-objective optimization; Tool loading; Genetic algorithm.

1. Introduction

Nowadays, the manufacturing industry is increasingly requesting flexible manufacturing systems (FMSs) than

conventional inflexible production systems. This is because FMSs are self-adjusting to produce various products

and/or alter the product generation’s order. Basically, an FMS includes a machine with several slots for loading

different tools. Each slot supports only one tool, and every product running on that machine requires a specific set of

tasks. Products are processed sequentially, so, each time a product is processed, the correct tools must be loaded on

the machine. As the accessible slots are finite, it may eventually be necessary to remove a tool from the magazine and

replace it with another tool. On this basis, the tool management is a demanding task which directly affects the

efficiency of FMSs. Minimizing different factors such as the total time, the risk of tool breakdowns, and tool switching

are important in FMSs (Pasha et al., 2024).

Although the order of tools in the magazine is mostly unrelated, the need to change a tool depends to the order, in

which the product is performed. The simple Tool Switching Problem (ToSP) consists to the finding an appropriate

product sequence and an associated sequence of tool switches for minimizing the number of tool loading/unloading

operations in the magazine. Clearly, this problem is especially interesting when the needed time for change a tool is a

significant part of the processing time of all the products (and hence the tool switching policy will significantly affect

https://msit.refconf.com/

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

43

the system performance). Different examples of the problem can be found in the diverse areas, such as electronic

industry, metalworking industry, computer memory management, aeronautics and generally, in the manufacturing

companies (Bard, 1988; Belady, 1966; Privault & Finke, 1995; Shirazi & Frizelle, 2001; Tang & Denardo, 1988). In

addition, the ToSP has a number of variants (Błazewicz & Finke, 1994; Jun et al., 1999; Kashyap & Khator, 1990).

In this model we tackle with multi job tools and the tools can do several tasks or jobs. This model determines a product

sequence and tool assigning for each stage dedicating to one product with the following objectives:

1. minimizing the total number of tool switches;

2. minimizing the overuse of tools per stage;

3. balancing tool usage.

Note that overuse of the specific tool means that this tool has been used more than one time per stage, which it was

collaborated on Section 3.1.2.

The rest of the paper is organized as follows: In section 2, the previous studies have been reviewed. The mathematical

model of the proposed ToSP is presented in section 3 and the solution method is discussed in section 4. Section 5

verifies the developed model by solving different numerical examples and section 6 concludes the study.

2. Literature Review

The first study in the ToSP can be traced back to the early 60’s (Belady, 1966). Later, the uniform ToSP has been

tackled by a number of various techniques. In the late 80’s, some studies have been contributed particularly to solve

the problem (ElMaraghy, 1985; Kiran & Krason, 1988). (Tang & Denardo, 1988) developed an Integer Linear

Programming (ILP) formulation of the problem, which followed later by (Bard, 1988) who described a non-linear

integer programming formulation with a dual-based relaxation heuristic method. Researchers have also applied

heuristic-based constructive methods to solve the problem. For instance, (Djellab et al., 2000) dealt with the ToSP by

a hypergraph representation and suggested a particular heuristic method to minimize the number of gaps in edge-

projection. They used the hypergraph to represent the relation between the products and the necessary tools. Moreover,

(Hertz et al., 1998) described three constructive methods, called FI, GENI and GENIUS, where at each step the product

supposed to be inserted in the current tour and the best position in the tour are selected. In addition, they considered

the nearest neighbor (NN) and 2-opt search methods.

Some studies have applied the exact methods for solving the problem. For example, (Laporte et al., 2004) proposed

two exact algorithms, branch-and-bound approach and linear programming-based branch-and-cut algorithm. The latter

is based on a new ILP formulation which has a better linear relaxation than the one proposed earlier by (Tang &

Denardo, 1988). It should not be neglected that since the ToSP is NP-hard for c>2, where c is the number of the slots

on the machine’s magazine (Crama et al., 1994; Oerlemans, 1992), these exact methods are limited. This limitation is

also underlined in (Laporte et al., 2004), where they reported that their proposed algorithm showed a very low success

ratio for instances with more than 10 products. Studies have also considered the clustering and grouping methods.

(Salonen et al., 2006) explored the uniform ToSP of the printed circuit boards (PCBs) and developed an algorithm

that prevents being stuck in local minimum points. To avoid identical groupings, the hierarchical grouping technique

is applied. The metaheuristic methods have been also applied in recent studies. Several tabu search methods have been

used in the literature (Al-Fawzan & Al-Sultan, 2003; Amaya et al., 2008; Hertz & Widmer, 1996; Konak et al., 2008;

Salonen et al., 2006). A different attractive approach, named beam search algorithm, has been developed by (Zhou et

al., 2005), which is especially efficient and practical in comparison to the previous techniques. It is because the search

width and the evaluation functions can be changed to adjust the performance of the algorithm. (Solimanpur &

Rastgordani, 2012) proposed an ant colony optimization algorithm to minimize the tool switching and indexing times

in automatic machining centers. They compare the performance of the proposed algorithm with a heuristic approach,

named multiple start greedy (MSG), through nine sample tests and concluded that the solutions of the ant colony

algorithm is promising. (Amaya et al., 2012) applied memetic algorithm to solve ToSP and showed its effectiveness

as a search paradigm. (Dadashi et al., 2016) proposed a new version of the ToSP in FMSs, in which a tool life is

assumed for every versatile tool. They applied GA to solve the Np-hard problem and find the minimum total part type

tardiness and tool purchasing cost. (Paiva & Carvalho, 2017) proposed an Iterated Local Search (ILS) method for the

Job Sequencing and Tool Switching Problem (SSP). They further represented the competitiveness of the suggested

approach through computational experiments.

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

44

(Amouzgar et al., 2021) proposed a mathematical formulation to find the optimum answers of a multi-objective tool-

indexing problem and developed a modified genetic algorithm to obtain feasible solutions. (Wang et al., 2022) studied

operation scheduling, tool scheduling, and restrained resources in a parallel machine scheduling problem to benefit

the real industry. To obtain the optimal solutions, they proposed a Tabu-Genetic Algorithm that can find the solutions

of large size problems within reasonable times and outperforms Tabu search algorithm and genetic algorithm in

selecting local and global optima. (Rifai et al., 2022)explored job sequencing and tool switching problem with

sequence-dependent setup, and developed a two-stage heuristic procedure to solve the problem. To find the near-

optimal job sequence, an adaptive large neighborhood search (ALNS) is applied in the first stage, and proposed a

combination of the Keep Tool Needed Soonest (KTNS) policy and simulated annealing (SA) for the tooling sub-

problem. The efficacy and robustness of their proposed method is demonstrated by carrying out comprehensive

computational experiments. (Darányi et al., 2023) presented a heuristic algorithm for tool assignment task of CNC

machines with the objective of minimizing the tools changeovers. They dealt with this problem as a multi-objective

hierarchical clustering problem, in which the similarity of the tool demands was the basis of grouping the products.

Comparing the results of their proposed algorithm with the optimal approach depicted minor differences, while the

running time of the heuristic approach was considerably lower. (Tri Windras Mara et al., 2023) proposed two integer

linear programming models for SSP and executed experimental tests to compare the sequence-dependent SSP with

the uniform SSP, and the results showed the effectiveness of multicommodity flow formulation. (Iori et al., 2024)

addressed four types of ToSP, proposed their mathematical formulations, and solved them by dedicated arc flow

models.

3. Problem Formulation

In this study, n products, that should be processed on a single FMS machine, are considered. The products and machine

are available at the beginning of the process. It is supposed that each product needs a specific set of works and each

work can be done by a specific set of tools. There are 𝑝 different works and 𝑚 available tools. Tools are multi jobs

and each tool can do specific works. Let 𝑠𝑖𝑖 denotes the set of works required by product 𝑖 and 𝑠𝑙𝑙 denotes the set of

tools, each of which can do work 𝑙. The tool magazine has 𝑐 tools slots and each tool occupies exactly one slot of the

tool magazine. The tool magazine of the machine can accommodate any combination of the tools. We assume that the

number of tools required to process each product is not larger than the magazine capacity 𝑐. There are 𝑛 stages

corresponding to each product. The tool switches are done at the first of each stage and switches among the processing

of product are avoided. The following notations have been used in this model.

Let 𝑁𝑘 = {1, . . . , 𝑘}. Also, we denote product with 𝑖 ∈ 𝑁𝑛, tool with 𝑘 ∈ 𝑁𝑚 , work with 𝑙 ∈ 𝑁𝑝 and stage with 𝑗 ∈

𝑁𝑛 . The decision variables are given below.

𝑥𝑖,𝑗 = {
1 if product 𝑖 is scheduled to stage 𝑗
0 otherwise

 (1)

𝑦𝑖,𝑗 = {
1 if tool 𝑘 is assigned to stage 𝑗
0 otherwis

 (2)

𝑧𝑖,𝑘,𝑙 = {
1 if product 𝑖 uses tool k for doing work 𝑙
0 otherwise

 (3)

3.1. Objectives of the problem

As mentioned before, the proposed model in this research involves determining a product sequence and tool assigning

for each stage (i.e., determining which tools should be employed for each work of the product) with the following

objectives:

1. Minimizing the total number of tool switching.

2. Minimizing the overuse of tools per stage.

3. Balancing the tool usage.

3.1.1. The total number of tool switching

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

45

We denote the total number of tool switching, as an objective denoted by U. This objective is computed by:

 𝑈 = ∑ ∑ 𝑦𝑘,𝑗(1 − 𝑦𝑘,𝑗−1)𝑗𝑘 (4)

where 𝑦𝑘,0 = 0 for all 𝑘.

3.1.2. The overuse of tools per stage

This objective is denoted by 𝑊 and calculates the total number of the tool usage that is more than one time per stage

(e.g., if a number of usage for tool 𝑘 for four stages are 1, 3, 2, and 1 respectively, the overuse of tool 𝑘 will be 𝑡𝑘 =
(1 − 1) + (3 − 1) + (2 − 1) + (1 − 1) = 3. To formulate 𝑊, the number of tool usage at stage j for tool k (𝑐𝑘,𝑗) is

firstly calculated as follows:

𝑐𝑘,𝑗 = ∑ 𝑥𝑖,𝑗 ∑ 𝑧𝑖,𝑘,𝑙𝑙𝑖 (5)

𝑊 = ∑ ∑ 𝑦𝑘,𝑗(𝑐𝑘,𝑗 − 1)𝑗𝑘 (6)

 3.1.3. Tool balancing

This objective aims to adjust and balance the tools usage to prevent tool’s failures, which is caused by overuse of the

tool during processing of the products. This objective is shown by 𝑉. Let 𝑎𝑘 be the number of tool usage for tool 𝑘

and determine its value as follows:

𝑎𝑘 = ∑ ∑ 𝑧𝑖,𝑘,𝑙𝑙𝑖 (7)

where, �̅� is the mean of tool usage and is defined by:

�̅� =
∑ 𝑎𝑘𝑘

𝑘
 (8)

Now, 𝑉 will be:

𝑉 = ∑ |𝑎𝑘 − �̅�|𝑘 (9)

3.2. Constraints definition

The constraints of the presented problem will be as follows:

∑ 𝑥𝑖,𝑗 = 1; for all 𝑖𝑗 (10)

∑ 𝑥𝑖,𝑗 = 1; for all 𝑗𝑖 (11)

𝑥𝑖,𝑗|𝑠𝑖𝑖| ≤ ∑ ∑ 𝑦𝑘,𝑗𝑧𝑖,𝑘,𝑙; for all 𝑖, 𝑗𝑘∈𝑠𝑙𝑙𝑖∈𝑠𝑖𝑖
 (12)

∑ ∑ 𝑧𝑖,𝑘,𝑙 = |𝑠𝑖𝑖| ; for all 𝑖𝑘𝑖 (13)

∑ 𝑧𝑖,𝑘,𝑙 = 1; for all 𝑖 , (𝑙 ∈ 𝑠𝑖𝑖)𝑘∈𝑠𝑙𝑙
 (14)

∑ yk,j ≤ ck ; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 (15)

𝑥𝑖,𝑗 , 𝑦𝑘,𝑗 , 𝑧𝑖,𝑘,𝑙 ∈ {0 , 1}

By considering Eq. 10, product i should be scheduled to one stage. Eq. 11 ensures that every stage should be occupied

by one product. Eqs. 12 to 14 ensure that a product can be scheduled on specific stage only if all of its required works

are satisfied by the existing tools on magazine (|𝑠𝑖𝑖| is cardinality of 𝑠𝑖𝑖). Constraint 15 states that tool usage should

not be greater than magazine capacity 𝑐.

3.3. Multi-objective optimization method

To optimize the objectives, the sum of objectives are considered to transform the multi-objective problem to a single

objective optimization as follows (Wierzbicki, 1982, 1986, 1999):

𝑧 = min [𝑎𝑎1 (
𝑈−𝑈𝑚𝑖𝑑

𝑈𝑛𝑎𝑑−𝑈∗) + 𝑎𝑎2 (
𝑉−𝑉𝑚𝑖𝑑

𝑉𝑛𝑎𝑑−𝑉∗) + 𝑎𝑎3(
𝑊−𝑊𝑚𝑖𝑑

𝑊𝑛𝑎𝑑−𝑊∗)] (16)

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

46

The weighted Lp-metric method with p=1 is used in this research to solve the multi-objective problem, where 𝑎𝑎1,

𝑎𝑎2, and 𝑎𝑎3 are weights for 𝑈, 𝑉, and 𝑊, respectively. 𝑈∗, 𝑉∗, and 𝑊∗ are the best values that can be achieved by

solving a single objective problem with the objectives 𝑈, 𝑉, and 𝑊, respectively, subject to the problem constraints.

Also, 𝑈𝑛𝑎𝑑, 𝑉𝑛𝑎𝑑 and 𝑊𝑛𝑎𝑑 are the weakest (nadir) values of 𝑈, 𝑉, and 𝑊 , respectively. 𝑈𝑚𝑖𝑑, 𝑉𝑚𝑖𝑑, and 𝑊𝑚𝑖𝑑 can

be defined by:

𝑈𝑚𝑖𝑑 =
𝑈𝑛𝑎𝑑−𝑈∗

2
 (17)

𝑉𝑚𝑖𝑑 =
𝑉𝑛𝑎𝑑−𝑉∗

2
 (18)

𝑊𝑚𝑖𝑑 =
𝑊𝑛𝑎𝑑−𝑊∗

2
 (19)

The reason for using this method is that in the applied tool loading’s algorithms (described in Section 4.1), the weight

of objectives should be determined firstly; thus, the decision maker (DM) is taken apart in the solution process. In

other words, we use one of posteriori methods (i.e., weighted Lp-metric method) (Wierzbicki, 1982) to solve the

problem.

4. Solving the Problem

The ToSP can be divided into three sub-problems (Tzur & Altman, 2004). The first sub-problem is machine loading

and includes determining the sequence of the products. The second sub-problem is tool loading and includes

determining which tool has to switch (if a switch is needed) before processing a product. The third sub-problem is slot

loading that consists of deciding where to place each tool. As the uniform ToSP is considered in this paper, only two

sub-problems have to be taken into account (i.e., machine loading and tool loading). In the simple ToSP (Amaya et

al., 2008), the tool loading sub-problem can be optimally solved if the sequence of products is known by following a

specific tool switching policy that guarantees to obtain the optimal number of tool switches for a given products

sequence. It is solved by the Keep Tool Needed Soonest (KTNS) method (Bard, 1988; Belady, 1966; Tang & Denardo,

1988); therefore, the meta-heuristic effort is concentrated on the machine loading stage (Amaya et al., 2008). In our

presented model for tool loading problem, a heuristic algorithm is introduced.

4.1. Tool loading

In the context of the uniform ToSP, the cost of switching a tool is assumed to be a constant (for all tools). The

introduced algorithm in this study, gets value 𝑍 that is a near-optimal solution for the given product sequence. As

mentioned above, we assume that the tools are multi jobs; but, if otherwise, then our tool loading algorithm will turn

to the KTNS algorithm. Unlike the KTNS-procedure, our tool loading algorithm does not guarantee to produce an

optimal solution. However, as shown in Section 5, it obtains a good and reasonable solution that is near to the optimum

point.

4.1.1. Tool loading algorithm

The steps of the proposed tool loading algorithm are as follow:

1. Get the product sequence (sop)

2. For all products (stages) with respect to the product sequence, do as follows (𝑖):

2.1. Sort the works of product 𝑖 (𝑠𝑖𝑖) according to the number of tools that can do work 𝑙, in an ascending sort

order and name this set 𝑠𝑤𝑜 (i.e., works will be sorted in an ascending order with respect to the value of

cardinality of its 𝑠𝑙𝑙)

2.2. For all members (works) in 𝑠𝑤𝑜 , do the following steps.

2.2.1. For work 𝑙 ∈ 𝑠𝑖𝑖 (or 𝑙 ∈ 𝑠𝑤𝑜), score to all of the tools in set 𝑠𝑙𝑙 as follows and name its set 𝑠𝑐𝑜𝑟𝑒1

(the member of set ‘𝑠𝑐𝑜𝑟𝑒1’ is score of the corresponding tool on set 𝑠𝑤𝑜):

2.2.1.1. Being on machine on the previous stage (i.e., product) or selected for the previous works

of the current stage (i.e., if it is true, then the corresponding tool’s score will be one; otherwise, it is

zero).

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

47

2.2.1.2. Power of being used on sub-sequent stages (see algorithm’s comments).

2.2.1.3. Sum values of Steps 2.2.1.1 and 2.2.1.2.

2.2.2. Normalize 𝑠𝑐𝑜𝑟𝑒1.

2.2.3. For work 𝑙 ∈ 𝑠𝑖𝑖 (or 𝑙 ∈ 𝑠𝑤𝑜), score to all of the tools in set 𝑠𝑙𝑙 as follows and name its set as 𝑠𝑐𝑜𝑟𝑒2:

Calculate the number of tool usage on the previous product, and the number of times of

corresponding tool is used at the current stage (product) for the previous work on set 𝑠𝑤𝑜 and sum

all of them. It is a score of the corresponding tool on set 𝑠𝑐𝑜𝑟𝑒2.

2.2.4. Normalize 𝑠𝑐𝑜𝑟𝑒2.

2.2.5. For work 𝑙 ∈ 𝑠𝑖𝑖 (or 𝑙 ∈ 𝑠𝑤𝑜), score to all of tools in set 𝑠𝑙𝑙 as follows and name its set as 𝑠𝑐𝑜𝑟𝑒3:

The number of times that the corresponding tool is used at the current product (for the previous

works on set 𝑠𝑤𝑜).

2.2.6. Normalize 𝑠𝑐𝑜𝑟𝑒3.

2.2.7. Calculate set ‘𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒’ (it is explained in Section 4.1.2).

2.2.8. Define the member with maximum value on set ‘𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒’ and select corresponding tool on set

𝑠𝑤𝑜 for the corresponding work.

2.3. Define a number of slots that do not schedule for tools until now (these will be places of unused tools at the

current stage) and name it as 𝑅.

2.4. If we are at the final stage, go to Step 2.5; otherwise, go to Step 2.6.

2.5. Consider the tools that existed on a machine at the previous stage and is not selected for the current stage

yet, select 𝑅 tools among these tools and go to the final step.

2.6. Consider the tools that are not selected for the current stage and score them as like as Steps 2.2.1 to 2.2.7,

except Steps 2.2.5 and 2.2.6 (i.e., we eliminate 𝑠𝑐𝑜𝑟𝑒3 at Step 2.2.7) and select 𝑅 tools with the best score.

3. End.

4.1.2. Algorithm’s comments

In this section, we introduce some definitions for performing the tool loading algorithm:

𝑠𝑝: It is a product-work matrix, whose arrays are binary if a specific product needs specific work for its processing,

then its corresponding array will be true (i.e., one).

𝑠𝑗: It is a work-tool matrix, arrays are binary if a specific tool can do specific work then the corresponding array will

be true.

𝑆𝑝𝑠𝑗: It is a product-tool matrix and its arrays denote the rate of the application of the corresponding tool for the

related product. It is defined by 𝑆𝑝𝑠𝑗 = 𝑠𝑝 × 𝑠𝑗.

𝑆𝑝𝑠𝑗s: It is a matrix like 𝑆𝑝𝑠𝑗; but its row’s dimension is arranged with respect to the product sequence.

Note 1: At Step 2.2.1.2 for defining the value of the ‘power of being used on subsequent stages’ for a specific tool,

we consider the corresponding column of matrix Spsjs and pick up arrays of subsequent products, in which this set is

named as E. We assume that g indicates the number of subsequent products, then E is a dimensional matrix with 1×g

dimension. Now, we can use matrix E to define the ‘power of being used on subsequent stages’ that is calculated as

follows:

Consider a matrix with g×1 dimension and name it as ‘norm’, the members of this matrix will be at a descending

order, more difference between two subsequent members means more emphasis on the nearest subsequent products.

At last for defining the value of the ‘power of being used’, we multiply matrix E to the matrix norm. For instance, if

we have three products for subsequent stages and assume E= [2 3 5] and 𝑛𝑜𝑟𝑚 = [𝑠2 𝑠1 𝑠0]𝑇 , the value of the

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

48

‘power of being used’ will be (s2×2)+(s×1)+(s×5). Note that s is a normalized coefficient. To define value s in our

experiment results, we find that if this value is greater than 2×c, the result will be better, i.e., among products that have

connection with a specific tool (corresponding array on Spsjs is not zero), the nearest consider more than others, this

section of algorithm is like KTNS algorithm in a simple ToSP problem.

Note 2: To normalize score1, score2, score3, the following step should be followed.

Get the maximum and minimum values of set’s members and name them as max and min, respectively.

For its entire arrays of score1, do as follows and replace the result with the previous value of the array (assume that Q

is a specific array):

𝑄−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 (20)

And for score2 and score3, do as follows:

𝑄−𝑚𝑖𝑛

𝑚𝑖𝑛−𝑚𝑎𝑥
 (21)

Finally, we multiply score1, score 2, score 3 to their corresponding normalized coefficients, and name it as ‘wscore1,

wscore2, wscore3’, respectively. Normalized scores with coefficients are as follows:

𝑤𝑠𝑐𝑜𝑟𝑒1 =
𝑎𝑎1

𝑈𝑛𝑎𝑑−𝑈∗ × (𝑠𝑐𝑜𝑟𝑒1) (22)

𝑤𝑠𝑐𝑜𝑟𝑒2 =
𝑎𝑎2

𝑊𝑛𝑎𝑑−𝑊∗ × (𝑠𝑐𝑜𝑟𝑒2) (23)

𝑤𝑠𝑐𝑜𝑟𝑒3 =
𝑎𝑎3

𝑉𝑛𝑎𝑑−𝑉∗ × (𝑠𝑐𝑜𝑟𝑒3) (24)

Then, the total score of the corresponding tool is obtained by:

total score =wscore1+wscore2+wscore3

4.1.3. The machine loading

In this section, we consider the product’s sequence and look for the best sequence of the product to minimize our

objective (Z). As mentioned before, this problem is NP-hard for c>2 and therefore, we use meta-heuristic algorithm

for solving the machine loading problem. Note that we do not intend to compare different meta-heuristic algorithms

with each other. We want to show a method to solve our proposed ToSP problem; therefore, it can be possible that

other ways (i.e., other meta-heuristic algorithms and parameter’s values, such as the crossover or mutation rate) exist

to obtain a better result.

In this section, we consider the genetic algorithm to solve the product’s sequence (i.e., machine loading) problem. For

recombination, a crossover scheme, called Alternating Position Crossover (APX), is used that consists of selection of

genes alternating of each parents (Larranaga et al., 1999). For the mutation operator, we consider the block

neighborhood that is proposed for the ToSP in (Al-Fawzan & Al-Sultan, 2003). It is based on swapping the whole

segments of contiguous positions. This mutation operator is Random Block Insertion (RBI) and works as follows:

1. A random block length 𝑏𝑙 ∈ 𝑁𝑛/2 is uniformly selected.

2. The starting point of the block 𝑏𝑠 ∈ 𝑁𝑛−2𝑏𝑙
 is subsequently selected at random.

3. Finally, an insertion point bi is selected, such that 𝑏𝑠 + 𝑏𝑙 ≤ 𝑏𝑖 ≤ 𝑛 − 𝑏𝑙 and the segments

(𝑏𝑠, 𝑏𝑠 + 𝑏𝑙) and (𝑏𝑖 , 𝑏𝑖 + 𝑏𝑙) are swapped.

5. Experimental Results

This section aims to verify the performance of the proposed model by sixteen numerical examples which have various

sizes. Branch-and-bound (B&B) method is used for finding the optimal values of small-sized examples under Lingo

8.0 software on a PC with two Intel® CoreTM2 T9300@ 2.5 GHz processors and 2 GB RAM. However, for large-

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

49

sized examples, it is not possible to find the optimal solution in a reasonable CPU time. Moreover, all of the examples

have been solved by the proposed genetic algorithm and the results are compared with the optimal solutions in terms

of the objective function values (i.e., U, V, W and Z; however, we emphasis on Z) and CPU time. Every example is

solved 20 times by GA and the best objective function value of Z and mean CPU time are reported. For large-sized

problems, the run time of Lingo is limited to three hours and the best solution obtained is reported. This limitation is

considered according to the quality of the obtained solutions by the proposed GA. However, a feasible solution cannot

be found for any large examples after three hours. We consider eight small and eight large-sized examples for our

experimental results. Note that to obtain Z according to Eq. 16, we assume that 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 are equal to one; in

other words, the objectives do not have any preference to each other.

 5.1. Small-sized examples

As mentioned before, we consider eight small-sized instances, the relation between the product and work (𝑠𝑝), and

the relation between work and tool (𝑠𝑗) for small-sized examples are as follows:

Examples 1 & 2:

𝑠𝑝 = [

0 1 1 0 1
0 1 0 1 0
1 1 0 0 0
0 0 1 0 1

] 𝑠𝑗 =

[

1 0 1 0 0 0
1 1 0 0 0 1
0 0 0 1 1 0
1 0 0 0 0 1
0 0 0 1 1 1]

Examples 3 & 4:

𝑠𝑝 =

[

1 1 1 0
1 1 0 0
0 1 1 0
0 1 1 0
0 0 1 1]

 𝑠𝑗 = [

1 1 0 0
0 1 1 0
1 0 1 1
0 0 1 1

]

Example 5:

𝑠𝑝 =

[

1 0 0 1 1
0 0 1 1 1
0 0 1 0 1
1 1 0 0 0
0 1 0 0 1
1 1 0 1 0]

 𝑠𝑗 =

[

1 0 1 0 1
0 0 0 1 1
1 1 1 0 1
0 0 1 1 1
1 1 1 0 0]

Examples 6 to 8:

𝑠𝑝 =

[

1 0 0 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 0 1 0 1 0
1 1 0 0 0 1 0 0
0 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1]

 𝑠𝑗 =

[

1 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1]

The population size of our proposed GA is 60 and the number of generations for small-sized examples are shown in

Table 1.

Table 1. Number of generations for small-sized instances

Example1 Example2 Example3 Example4 Example5 Example6 Example7 Example8

30 30 60 60 100 200 300 500

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

50

We solve small-sized problems with both B&B method and GA. Table 2 shows the related results. The average of the

relative gap between the B&B and GA in term of Z is computed about 3.5%. We also compare the CPU times of the

B&B and GA as represented in Fig. 1. The exponential trend of the B&B’s CPU time when the size of instances

increases is visible in this figure.

Table 2. Comparison between B&B and GA runs for small-sized instances

No.

Problem Information

Product Work Tool c U V W Z
CPU time

(Sec.)
U V W Z

Mean of

CPU time

Gap

(%)

1

2

3

4

5

6

7

8

4

4

5

5

6

6

6

6

5 6 3 1 6 0 0.6077 15 0 9 0 0.65 0.95 6.5

5 6 4 0 6 0 0.3248 19 0 6 0 0.3248 1.04 0

4 4 3 1 1.5 0 0.641 57 1 3 0 0.7221 1.8 12.5

4 4 4 0 1.5 0 0 55 0 1.5 0 0 2.04 0

5 5 3 3 0 0 0.753 586 3 0 0 0.753 24.5 0

8 10 3 5 11.2 0 0.3476 6480 5 11.2 0 0.3476 56 0

8 10 4 4 11.2 0 0.2643 6710 4 11.2 0 0.2643 92 0

8 10 5 3 11.2 0 0.2201 7450 4 11.2 0 0.2403 161 9.1

Fig. 1. Comparison between the B&B and GA in terms of CPU times

 5.2. Large-sized examples

We consider eight instances for large-sized examples solved by both the B&B and GA. To run our proposed GA, the

population size is 60 and the number of generations is 1000 for all 8 instances. The relation between the product and

work (𝑠𝑝), and relation between the work and tool (𝑠𝑗) for large-sized examples are given bellow.

Examples 9 and 10:

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8

C
P

U
 t

im
e(

S
ec

.)

instance No.

B&B

GA

Expon. (B&B)

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

51

𝑠𝑝 =

[

1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 0]

 𝑠𝑗 =

[

1 0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1
0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1]

Examples 11 and 12:

𝑠𝑝 =

[

1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0]

 𝑠𝑗 =

[

1 0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1
0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1]

Examples 13and 14:

𝑠𝑝 =

[

1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 1 0 0 1]

 𝑠𝑗 =

[

1 0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1
0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1]

Example 15:

𝑠𝑝 =

[

1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0
1 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1
1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0]

 𝑠𝑗 =

[

0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1]

Example 16:

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

52

𝑠𝑝 =

[

0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0
1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0
1 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]

 𝑠𝑗 =

[

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0]

We also solve large-sized problems with both the B&B and GA. Table 3 shows the related results. According to this

table, the B&B method obtains the feasible space within three hours in four of eight instances, and the results of this

instances are weaker than the proposed GA in this research. In this case, as shown in Figure 2, the CPU time of the

GA demonstrates a polynomial behavior when the size of instances increases. Furthermore, Figure 3 represents a

typical convergence of the GA during 2000 successive generations related to a single run.

Table 3. Comparison between B&B and GA runs for large-sized instances

No.

Problem Information

Product Work Tool c U V W Z

CPU

time

(Sec.)

U V W Z

Mean of

CPU

time

1 8 10 10 5 5 9.6 0 0.5 10800 5 8 0 0.43 399

2 8 10 10 6 4 6.8 0 0.4107 10800 3 8.4 0 0.3036 401

3 10 10 10 5 11 5.2 0 0.8627 10800 9 5.2 0 0.4615 654

4 10 10 10 6 6 8.8 1 0.8768 10800 3 8.8 0 0.3961 640

5 12 10 10 5 - - - - 10800 7 6 0 0.4471 655

6 12 10 10 6 - - - - 10800 4 7.2 0 0.3059 660

7 16 16 16 10 - - - - 10800 14 10.25 0 0.25 2215

8 20 25 25 10 - - - - 10800 48 32 0 1.18 5800

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

53

Figure 2. Polynomial trend of the GA's CPU time for large-sized problems

Figure 3. Typical convergence of GA during 2000 successive generations related to a single run

6. Conclusion

This paper considers the Tool Switching Problem that is a famous problem in the field of operations research. The

simple ToSP deals with determining the product sequence and tool loading on a machine with the objective of

minimizing the total number of tool switches. This study introduces a new multi-objective ToSP model. Unlike the

previous studies, we have the multi job tools (i.e., each tool can perform several tasks or jobs). The new ToSP model

has determined the product sequence and tool assigning for each stage with the following objectives:

1. Minimizing the total number of tool switches.

2. Minimizing the overuse of tools per stage.

3. Tool balancing usage.

The ToSP is an NP-hard problem, which means that large-sized problems will be solved hardly; therefore, the meta-

heuristic based on GA is proposed in this paper. We have first presented the new mathematical formulation of the

-1000

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8

C
P

U
 t

im
e

(S
e

c.
)

instance No.

GA

Poly. (GA)

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

54

ToSP, and then introduced a new tool loading algorithm to help the meta-heuristic algorithm related to the machine

loading. Furthermore, we have solved the presented model for various instances by the use of the branch-and-bound

and genetic algorithm methods. The obtained results have been compared, in which a relative gap between solutions

reported by GA and optimum solutions found by B&B in terms of the objective function value (Z) has been about

3.5%. Future research can focus on proposing other metaheuristic algorithms, such as hybrid ones, and compare the

results and the CPU time with the applied approach in this research. Moreover, the model can be solved for real data

to verify the performance of the model in industry.

References

Al-Fawzan, M. A., & Al-Sultan, K. S. (2003). A tabu search based algorithm for minimizing the number of tool

switches on a flexible machine. Computers and Industrial Engineering, 44(1), 35–47. https://doi.org/10.1016/S0360-

8352(02)00183-3

Amaya, J. E., Cotta, C., & Fernández, A. J. (2008). A memetic algorithm for the tool switching problem. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 5296 LNCS, 190–202. https://doi.org/10.1007/978-3-540-88439-2_14

Amaya, J. E., Cotta, C., & Fernández-Leiva, A. J. (2012). Solving the tool switching problem with memetic

algorithms. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 26(2), 221–235.

https://doi.org/10.1017/S089006041100014X

Amouzgar, K., Nourmohammadi, A., & Ng, A. H. C. (2021). Multi-objective optimisation of tool indexing problem:

a mathematical model and a modified genetic algorithm. International Journal of Production Research, 59(12), 3572–

3590. https://doi.org/10.1080/00207543.2021.1897174

Bard, J. F. (1988). A heuristic for minimizing the number of tool switches on a flexible machine. IIE Transactions

(Institute of Industrial Engineers), 20(4), 382–391. https://doi.org/10.1080/07408178808966195

Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal, 5(2),

78–101. https://doi.org/10.1147/sj.52.0078

Błazewicz, J., & Finke, G. (1994). Scheduling with resource management in manufacturing systems. European

Journal of Operational Research, 76(1), 1–14. https://doi.org/10.1016/0377-2217(94)90002-7

Crama, Y., Oerlemans, A. G., & Spieksma, F. C. R. (1994). Minimizing the number of tool switches on a flexible

machine. The International Journal of Flexible Manufacturing Systems, 6, 165–195. https://doi.org/10.1007/978-3-

662-00459-3_8

Dadashi, H., Moslemi, S., & Mirzazadeh, A. (2016). Optimization of a New Tool Switching Problem in Flexible

Manufacturing Systems with a Tool Life by a Genetic Algorithm. International Journal of Industrial and

Manufacturing Systems Engineering, 1(3), 52–58. https://doi.org/10.11648/j.ijimse.20160103.12

Darányi, A., Czvetkó, T., Kummer, A., Ruppert, T., & Abonyi, J. (2023). Multi-objective hierarchical clustering for

tool assignment. CIRP Journal of Manufacturing Science and Technology, 42, 47–54.

https://doi.org/10.1016/j.cirpj.2023.02.002

Djellab, H., Djellab, K., & Gourgand, M. (2000). New heuristic based on a hypergraph representation for the tool

switching problem. International Journal of Production Economics, 64(1), 165–176. https://doi.org/10.1016/S0925-

5273(99)00055-9

ElMaraghy, H. A. (1985). Automated tool management in flexible manufacturing. Journal of Manufacturing Systems,

4(1), 1–13. https://doi.org/10.1016/0278-6125(85)90003-2

Hertz, A., Laporte, G., Mittaz, M., & Stecke, K. E. (1998). Heuristics for minimizing tool switches when scheduling

part types on a flexible machine. IIE Transactions (Institute of Industrial Engineers), 30(8), 689–694.

https://doi.org/10.1080/07408179808966514

Solving a New Multi-Objective Model for a Tool Switching Problem in Flexible Manufacturing Systems by a Genetic Algorithm

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

55

Hertz, A., & Widmer, M. (1996). An improved tabu search approach for solving the job shop scheduling problem with

tooling constraints. Discrete Applied Mathematics, 65(1–3), 319–345. https://doi.org/10.1016/0166-218X(95)00040-

X

Iori, M., Locatelli, A., Locatelli, M., & Salazar-González, J. J. (2024). Tool switching problems with tool order

constraints. Discrete Applied Mathematics, 347(April), 249–262. https://doi.org/10.1016/j.dam.2023.12.031

Jun, H. B., Kim, Y. D., & Suh, H. W. (1999). Heuristics for a tool provisioning problem in a flexible manufacturing

system with an automatic tool transporter. IEEE Transactions on Robotics and Automation, 15(3), 488–496.

https://doi.org/10.1109/70.768181

Kashyap, A. S., & Khator, S. K. (1990). Modeling of a Tool Shared Flexible Manufa Cturing System. Proceedings of

the 1994 Winter Simulation Conference, 1249(Oct), 395–403.

Kiran, A., & Krason, R. (1988). Automated tooling in a flexible manufacturing system. Industrial Engineering.

Konak, A., Kulturel-Konak, S., & Azizoǧlu, M. (2008). Minimizing the number of tool switching instants in Flexible

Manufacturing Systems. International Journal of Production Economics, 116(2), 298–307.

https://doi.org/10.1016/j.ijpe.2008.09.001

Laporte, G., Salazar-González, J. J., & Semet, F. (2004). Exact algorithms for the job sequencing and tool switching

problem. IIE Transactions (Institute of Industrial Engineers), 36(1), 37–45.

https://doi.org/10.1080/07408170490257871

Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Costs of secondary parasitism in

the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Artificial Intelligence Review, 13,

129–170. https://doi.org/10.1023/A

Oerlemans, A. (1992). Production planning for flexible manufacturing systems. University of Limburg, Maastricht,

Limburg, Netherlands.

Paiva, G. S., & Carvalho, M. A. M. (2017). Improved heuristic algorithms for the Job Sequencing and Tool Switching

Problem. Computers and Operations Research, 88, 208–219. https://doi.org/10.1016/j.cor.2017.07.013

Pasha, N., Amoozad Mahdiraji, H., Razavi Hajiagha, S. H., Garza-Reyes, J. A., & Joshi, R. (2024). A multi-objective

flexible manufacturing system design optimization using a hybrid response surface methodology. Operations

Management Research, 17(1), 135–151. https://doi.org/10.1007/s12063-023-00412-w

Privault, C., & Finke, G. (1995). Modelling a tool switching problem on a single NC-machine. Journal of Intelligent

Manufacturing, 6(2), 87–94. https://doi.org/10.1007/BF00123680

Rifai, A. P., Mara, S. T. W., & Norcahyo, R. (2022). A two-stage heuristic for the sequence-dependent job sequencing

and tool switching problem. Computers & Industrial Engineering, 163, 107813.

https://doi.org/10.1016/j.cie.2021.107813

Salonen, K., Raduly-Baka, C., & Nevalainen, O. S. (2006). A note on the tool switching problem of a flexible machine.

Computers and Industrial Engineering, 50(4), 458–465. https://doi.org/10.1016/j.cie.2004.11.002

Shirazi, R., & Frizelle, G. D. M. (2001). Minimizing the number of tool switches on a flexible machine: An empirical

study. International Journal of Production Research, 39(15), 3547–3560.

https://doi.org/10.1080/00207540110060888

Solimanpur, M., & Rastgordani, R. (2012). Minimising tool switching and indexing times by ant colony optimisation

in automatic machining centres. International Journal of Operational Research, 13(4), 465–479.

https://doi.org/10.1504/IJOR.2012.046228

Tang, C. S., & Denardo, E. V. (1988). Models arising from a flexible manufacturing machine, part II: minimization

of the number of switching instants. Operations Research, 36(5), 778–784. https://doi.org/10.1287/opre.36.5.778

Tri Windras Mara, S., Sutoyo, E., Norcahyo, R., & Pratama Rifai, A. (2023). The job sequencing and tool switching

problem with sequence-dependent set-up time. Journal of King Saud University - Engineering Sciences, 35(1), 53–

61. https://doi.org/10.1016/j.jksues.2021.02.015

Dadashi, Molamohamadi and Mirzazadeh

MANAGE. SCI. INF. TECHNOL. (MSIT), VOL.1, NO.1

56

Tzur, M., & Altman, A. (2004). Minimization of tool switches for a flexible manufacturing machine with slot

assignment of different tool sizes. IIE Transactions (Institute of Industrial Engineers), 36(2), 95–110.

https://doi.org/10.1080/07408170490245351

Wang, S., Zou, H., & Wang, S. (2022). A Tabu-GA-based parallel machine scheduling with restrained tool resources.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(1–2), 39–

50. https://doi.org/10.1177/0954405420928691

Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3(5), 391–

405. https://doi.org/10.1016/0270-0255(82)90038-0

Wierzbicki, A. P. (1986). On the Completeness and Constructiveness of Parametric Characterizations to Vector

Optimization Problems. OR Spectrum, 8, 73–87.

Wierzbicki, A. P. (1999). Reference point approaches. In Multicriteria Decision Making: Advances in MCDM Models,

Algorithms, Theory, and Applications by T. Gal, T.J. Stewart, T. Hanne (Eds.) (p. Chapter 9).

Zhou, B. H., Xi, L. F., & Cao, Y. S. (2005). A beam-search-based algorithm for the tool switching problem on a

flexible machine. International Journal of Advanced Manufacturing Technology, 25(9–10), 876–882.

https://doi.org/10.1007/s00170-003-1925-2

