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Obijective: The growing energy crisis, particularly in the electricity sector,
caused by rising demand and depletion of fossil fuel resources, necessitates
accurate electricity consumption forecasting. This study aims to develop a
reliable prediction model using Long Short-Term Memory (LSTM) networks
to capture long-term temporal dependencies and nonlinear patterns in
electricity usage.

Methods: Key factors influencing electricity consumption were identified, and
historical data were normalized and split into training and testing sets. A two-
layer LSTM network with ReLU activation was employed to model electricity
consumption patterns. The model’s predictive performance was evaluated
using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
Coefficient of Determination (R?), and Mean Absolute Percentage Error
(MAPE).

Results: The LSTM model effectively captured complex temporal patterns in
electricity consumption, producing predictions that closely matched actual
values. The evaluation metrics demonstrated the model’s high accuracy and
robustness compared to classical forecasting approaches.

Conclusion: The proposed LSTM-based approach provides a practical tool for
accurate electricity consumption forecasting. These results can support energy
planning, optimize electricity management, and reduce the economic and social
costs associated with overconsumption, contributing to more sustainable
energy provision.
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1. Introduction

Electricity, as one of the most versatile and widely utilized forms of energy, holds paramount importance in modern
society due to its ease of conversion, relative safety, environmental advantages, and efficient transmission capabilities.
In 2017, electricity accounted for 11% of total final energy consumption (Tavanir Specialized Holding Company,
2023). Beyond fulfilling the energy requirements of various economic sectors, electricity plays a pivotal role in
enhancing quality of life, advancing social welfare, driving industrial development, and increasing national income.
Consequently, it is regarded as a fundamental infrastructure service and a critical driver of economic growth.

Electric power infrastructure and equipment represent essential public assets, with their development having a
direct and measurable impact on economic progress. This relationship is particularly pronounced in developing
countries, where the success of industrial initiatives and improvements in public welfare are heavily dependent on the
expansion and reliability of the electricity sector (Shirsath & Singh, 2010). Moreover, ensuring a stable and sustainable
electricity supply requires meticulous planning and accurate consumption forecasting. The increasing number of
electricity consumers, as illustrated in Figure 1, underscores the growing demand for electricity and the necessity of
effective management strategies (Tavanir Specialized Holding Company, 2023).
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Figure 1. Electricity Consumer Growth Index.

Numerous studies have been conducted in recent years to identify the key parameters influencing electricity
consumption growth. These studies indicate that factors such as population dynamics, Gross Domestic Product (GDP),
electricity tariffs, and consumption control policies (including the number of consumers) are among the most
significant determinants of electricity consumption patterns (Edomah, 2021).
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However, electricity consumption has exhibited a persistent upward trajectory in recent years, driven by factors
including population growth, urbanization, improved living standards, tariff adjustments, climate variations, and the
expansion of industrial and commercial activities. Notably, this trend has continued even during periods of low or
negative economic growth, and the implementation of targeted subsidy reform policies has had minimal impact on
curbing consumption growth.

Without fundamental reforms in electricity consumption management, the country faces substantial economic and
social consequences. The rapid escalation of energy consumption in Iran has raised serious concerns regarding the
nation's capacity to maintain its energy export potential in the coming decades (Khiabani, 2016).

The electricity industry serves as a critical infrastructure sector underpinning both industrial advancement and
social welfare provision. Given the sharp increase in electricity consumption and the growing challenges in securing
necessary resources, the implementation of optimized consumption management solutions has become increasingly
urgent. Achieving this optimization requires a thorough analysis of the entire electricity supply chain, from generation
to final consumption. Forecasting electricity consumption in a power network, as depicted in Figure 2, necessitates a
comprehensive understanding of the energy transmission pathway from generation to end-use. Electrical energy, after
generation at power plants, is transmitted through step-up transformers and high-voltage transmission lines (765, 500,
345, 230, and 138 kV) to reach various consumer categories. Accurate consumption prediction at each stage of this
transmission chain contributes significantly to optimizing electricity generation and distribution (“Electric power
distribution,” n.d.).
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Figure 2. Electricity Supply Chain.
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Figure 3. The Interconnection of Networks in the Electricity Supply Chain.

Figure 3 provides detailed insight into the distribution network structure, illustrating the connection pathways for
commercial, industrial, and residential consumers (Selvaraj et al., 2014). Among these consumer categories, industrial
users play a particularly crucial role in load management due to their substantial share of total consumption and their
operational flexibility. Precise consumption forecasting for industrial consumers, especially during peak demand
periods, can substantially improve grid management efficiency. Industrial facilities possess the capability to minimize
load during peak hours and shift high-consumption activities to off-peak periods. Consumption pattern prediction in
this sector, based on the network structure shown in Figure 3, enables more effective planning for electricity generation
and distribution.

On the other hand, industrial consumers are notably more sensitive to power interruptions than other user
categories. Therefore, strategic placement of industrial facilities in areas with minimal electrical disruptions becomes
essential for ensuring operational continuity and economic efficiency. This underscores the critical importance of
accurate consumption forecasting and proactive planning for reliable electricity supply in industrial zones.

The implementation of consumption management policies and precise electricity demand forecasting in the
industrial sector is therefore essential, particularly given the complex structure of the distribution network illustrated
in the figures. Accurate consumption forecasting within this framework can contribute significantly to cost reduction,
enhanced grid stability, and optimized electricity generation and distribution.

This study employs the Long Short-Term Memory (LSTM) method for forecasting electricity consumption in the
power industry. Subsequently, the model's validity is evaluated using standard error measurement metrics to assess the
accuracy and reliability of the electricity consumption predictions.

2. Literature Review

In the Iranian economy, petroleum products, natural gas, and electricity are fundamental to economic stability and
energy security. However, economic policies centered on low energy pricing have impeded consumption optimization
and hindered productivity growth. Subsidized energy prices have resulted in increased consumption and inefficiency,
particularly within the industrial sector. Furthermore, due to the monopolistic nature of energy transmission and limited
storage infrastructure, electricity prices in Iran remain substantially lower than in developed nations. Empirical
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evidence, discussed in subsequent sections, demonstrates that energy demand in Iran exhibits price and income
inelasticity.

Early studies on electricity demand elasticity established important baseline findings. Ang (1988) analyzed
electricity demand across East Asian countries, revealing that nations with higher per capita income exhibit lower
income elasticity of electricity demand. Similarly, Eltony and Mohammad (1993) found that government subsidies in
Gulf Cooperation Council (GCC) countries resulted in inelastic electricity demand. Al-Aziz and Hawdan (1999)
further demonstrated that price and income elasticity of energy demand varies significantly across different countries
and economic contexts.

Within the Iranian context, several foundational studies have examined electricity demand characteristics. Fakhraei
(1992) and Kazemi (1996) estimated electricity demand functions for the industrial sector, both concluding that
electricity demand in this sector demonstrates inelasticity with respect to price and income fluctuations. Subsequent
research by Asgari (2001) and Samadi et al. (2009) reinforced these findings, showing that Iranian electricity
consumers exhibit minimal responsiveness to price and income changes. Changi Ashtiani and Jallouli (2012) and
Latifalipur et al. (2015) employed various econometric models to estimate electricity demand functions across
residential and industrial sectors, consistently finding evidence of inelastic demand. Additionally, Sadegi and Ebrahimi
(2013) identified a positive and significant relationship between financial development and electricity consumption in
Iran.

Recent advances in artificial intelligence and machine learning have revolutionized electricity consumption
forecasting methodologies. Raeisi-Gahruei and Beheshti (2022) implemented a multilayer perceptron neural network
(MLP) optimized with the Zagan algorithm for electricity consumption prediction, demonstrating superior
performance compared to alternative heuristic algorithms. Saranj and Zolfaghari (2022) combined the Ant Colony
Optimization (ACO) algorithm with ARIMAX-GARCH models, utilizing wavelet decomposition to forecast
electricity consumption across different time horizons. In the domain of grid resilience, Lee et al. (2024) developed
predictive models for power outages caused by winter storms using ensemble machine learning methods including
Random Forest, XGBoost, and Support Vector Machines (SVM). Rizvi (2024) explored the application of SVM and
neural networks in smart grid systems, focusing on real-time energy optimization and renewable energy integration.

Statistical and hybrid modeling approaches have also demonstrated significant potential. Rabbi et al. (2020)
employed the ARIMAX model incorporating external variables such as population growth and GDP to forecast
electricity demand in Bangladesh, showing that multivariate models outperform univariate alternatives. Collino and
Ronzio (2021) applied ARIMAX methodology to short-term and very short-term photovoltaic generation forecasting,
integrating meteorological and satellite data as exogenous inputs. Arjmand et al. (2019) emphasized the critical role of
data preprocessing and transformation techniques in enhancing forecast accuracy, demonstrating that Box-Cox
transformations yield superior results compared to conventional methods. Armano and Pegoraro (2022) proposed novel
techniques for feature importance assessment in electricity demand forecasting, facilitating interpretation of neural
network hidden layer dynamics.

In electricity price forecasting, Jalebi et al. (2023) utilized time series models including Ordinary Least Squares
(OLS), GARCH, and copula methods to predict electricity prices in spot and forward markets, finding that
trigonometric functions effectively capture seasonal price behavior. Ding et al. (2018) applied a modified gray
prediction model to forecast electricity consumption in China, demonstrating improved accuracy relative to benchmark
models.

Table 1 provides a comprehensive summary of recent studies in electricity consumption forecasting, categorized
by methodology, geographic context, and key findings. The table highlights the evolution from traditional econometric
approaches to advanced machine learning techniques, demonstrating the increasing sophistication of forecasting
methodologies in recent years.
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TSA: Time Series Analysis, ARDL: Autoregressive Distributed Lag Model, ANN: Neural Networks, LSTM: Long Short-Term Memory; ML:
Machine Learning; GARCH: Generalized Autoregressive Conditional Heteroskedasticity; HM: Hybrid Models; EG: Electricity Generation; ET:
Electricity Transmission; ED: Electricity Distribution; EC: Electricity Consumption; FN: Fuzzy Networks; SG: Smart Grid; RE: Renewable
Energy; PE: Price Elasticity; IE: Income Elasticity; CF: Consumption Forecasting; PF: Price Forecasting.
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3. Methodology of the Study
3.1 LSTM (Long Short-Term Memaory)

LSTM (Long Short-Term Memory) networks are a type of RNN that incorporate additional memory features to address
challenges such as the vanishing and exploding gradient problems (Ghulam et al., 2019) .These networks are composed
of interconnected blocks known as memory cells, specifically designed to tackle these issues. The memory cells contain
gates that determine whether information should be removed from or added to the cell state, as illustrated in Error!
Reference source not found.. By utilizing these gates, LSTMs are able to model long-term dependencies in input
data, which is particularly beneficial for text classification tasks. Overall, LSTMs represent an advanced approach
compared to traditional RNNs, enabling more effective handling of complex and sequential data.

LSTM Layer Hidden Layer

> LSTM '
Embedding matrix S\ N/ "
v

Input

Output

Figure 4. Architecture of Long Short-Term Memory (LSTM).

The architecture of LSTM consists of several gates and memory cells, which enable the network to store and retain
information over time and across different time scales (Tran et al., 2016). An LSTM has an input x,, which may either
be the output of a Convolutional Neural Network (CNN) or a direct input sequence. Additionally, the inputs h,_, and
c;_, are taken from the previous time step, and the output of the LSTM at this time step is o,. The LSTM also generates
¢; and h,_, for use in the subsequent time step.

Forget Gate: The forget gate determines which information from the previous cell state should be discarded (Kim
et al., 2016). This gate takes as input both the previous cell state C,_; and the current input x,, and produces a value
between 0 and 1 for each component of the cell state. The corresponding formula for the forget gate is shown in formula

D:

fe= U(Wf- [he—1, %] + bf) 1)
Input Gate: The input gate regulates the amount of new information that should be added to the cell state. This gate
calculates two values: the candidate values C; (the candidate new cell state) and the input gate i,, which determines

the extent to which the candidate values should be incorporated into the cell state. The corresponding formulas for the
input gate are given by formulas (2) and (3):

iy = o(W;. [heoq, x¢] + b)) 2

a = tanh(W¢. [he—1, X¢] + b¢) (3)
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The input gate, denoted as i, , determines the extent to which the candidate cell state should be added to the current
cell state. The candidate new cell state is represented by C,. The weight matrices for the input gate and the candidate
cell state are denoted as W, & W, , respectively, while their corresponding bias terms are represented by b; & b.. The
activation functions used in the process include the sigmoid function o and the hyperbolic tangent function (tanh),
which play crucial roles in regulating the flow of information within the LSTM cell.

In LSTM, (C,) is the candidate cell state, generated using the tanh function and modulated by the input gate i,
before updating the final cell state C,. The tilde (~) notation signifies its intermediate role in the memory update
process.

Update Cell State: The new cell state C, is computed by combining the forget gate, the input gate, and the previous
cell state. This is done by retaining part of the previous cell state using the forget gate and adding new information
from the input gate and the candidate cell state. The formula for updating the cell state is given by formula (4):

Ct = fe-Coq + i a (4)

The forget gate output, f; determines how much of the previous cell state C;_, is retained, while the input gate

output, i, regulates the contribution of the candidate cell state (C,) to the new cell state. These mechanisms collectively
control the flow of information and memory retention in the LSTM unit.

Output Gate: The output gate determines the next hidden state i, and the output of the LSTM cell. It combines the
current input x, and the previous hidden state h,_; to calculate the output gate o, and the final output. The
corresponding formula for the output gate is given by formulas (5) and (6):

Ce = ft-Ceeq + i C} (5)

hy = o;.tanh(C;) (6)

Here, o, represents the output gate, which controls how much of the updated cell state contributes to the final
output. The output gate is computed using the sigmoid activation function o, applied to a weighted sum of the previous
hidden state h,_,and the current input x,, along with a bias term b,. The weight matrix associated with the output gate
is denoted as W,. Together, these components enable the LSTM to regulate memory updates and maintain long-term
dependencies in sequential data.

4, Results

In this study, the input dataset comprises four key factors that significantly influence industrial electricity consumption:
population, gross domestic product (GDP), industrial electricity prices, and the number of electricity subscribers.
Electricity consumption in the industrial sector is designated as the dependent variable, meaning the model aims to
predict its fluctuations based on variations in these independent variables.

To enhance prediction accuracy and overall model performance, the dataset underwent a normalization process.
This step ensured that all input variables were scaled within the same range, preventing any single variable from
disproportionately affecting the model due to differences in unit magnitude. Normalization also facilitated faster
convergence during training and improved the model's generalization ability.

Following data pre-processing, the dataset was split into two subsets: a training set (comprising 80% of the data)
and a testing set (comprising 20%). The LSTM model was trained using the training dataset, enabling it to learn the
intricate relationships between the independent variables and electricity consumption patterns.
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The LSTM model architecture consists of two stacked LSTM layers, each containing 50 neurons. A Rectified

Linear Unit (ReLU) activation function was employed to introduce non-linearity and enhance the model's capacity to
capture complex patterns in the data. The first LSTM layer processes input sequences and extracts relevant features,
which are then passed to the second LSTM layer for further refinement, ultimately generating the model's final output.
To optimize the training process, the Adam optimization algorithm was utilized. Adam is a widely adopted
optimization technique that integrates the benefits of both the AdaGrad and RMSProp algorithms, making it
particularly effective for deep learning models. Additionally, the Mean Squared Error (MSE) loss function was used
as the performance criterion during training, ensuring that the model minimizes the average squared difference between
predicted and actual values.

Upon completing the training phase, the trained LSTM model was used to generate predictions for both the training

and testing datasets. These predictions were then compared against actual observed values to evaluate the model’s
accuracy and reliability. Several evaluation metrics were employed to quantify the model’s performance, including
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of
Determination (R?), and Mean Absolute Percentage Error (MAPE). These metrics provided a comprehensive
assessment of the model’s predictive capabilities by measuring error magnitude, variance, and overall model fit.

Figure 2, Figure 3, Figure 1, Figure 4 presents the results obtained from this method, demonstrating the

effectiveness of the LSTM model in capturing electricity consumption trends and providing accurate forecasts.

-]

Predicted (Test)

N
=]

o
5]

Test Data Prediction

Train Data Prediction

=== Actual
A Predicted

0 2 4 6 8 10
sample

Figure 2. Prediction Results Using the
LSTM Method for Test Data

Observed vs Predicted (Test Data)

=== Actual (Train)
Predicted (Train)

0 10 20 30 40
sample

Figure 1. Prediction Results Using the LSTM
Method for Training Data

Observed vs Predicted (Train Data)

10 20 30 40 50 60
Observed (Test)

Figure 4. Comparison of LSTM-Predicted Test Data
with Actual Values

Predicted (Train)

70

60

50

a0

30

20

10 20 30 40 50 60 70
Observed (Train)

Figure 3. Comparison of LSTM-Predicted Training
Data with Actual Values




ELECTRICITY CONSUMPTION FORECASTING USING THE LSTM ... | Hosseini & Lak Ghasemabadi 183

5. Model Evaluation Metrics

In the previous chapters, the forecasting methods for electricity consumption and the modeling techniques used were
reviewed. Now, to evaluate the models, four error metrics, namely the Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Coefficient of Determination (R?), and Root Mean Squared Error (RMSE), have been used
for comparison. Each of these metrics is computed using the following formulas:

2y = 3l

MAE = =222 & )
n
MAPE = Z <M> x 100 (8)
Yi
Y —9)?
2 1 _ 9
R RS ®)
RMSE = Zi(:Vin— 371)2 (10)

In error metrics such as MAE, RMSE, and R2 y; represents the actual data points, ¥, denotes the predicted values,
and n indicates the total number of data points. Error! Reference source not found. shows the error metrics (MAE,
MAPE, R, and RMSE) for the LSTM model on both training and testing data.

Table 2. Error Metrics for the LSTM Model for Training and Test Data.

Error Test Train
MAE 0.9715 0.836
MAPE 3.827% 4.856%
R? 0.992 0.994
RMSE 1.364 1412

The analysis and results demonstrate that the electricity consumption forecasting using this method yields highly
accurate and dependable predictions, making it a robust approach for forecasting energy demand.

6. Conclusion

This study utilized data spanning from 2019 to 2022 (1398-1401 Solar Hijri calendar) to forecast electricity
consumption in the industrial sector using Long Short-Term Memory (LSTM) neural networks. The results
demonstrate that the LSTM-based approach delivers highly accurate and reliable predictions by effectively capturing
complex nonlinear relationships among key influencing variables, including population, gross domestic product
(GDP), electricity price, and the number of subscribers.

Performance evaluation using multiple statistical metrics—Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Coefficient of Determination (R?), and Root Mean Squared Error (RMSE)—confirmed the
model's exceptional predictive capability. Specifically, the model achieved R? values exceeding 0.99 for both training
and testing datasets, indicating strong alignment between predicted and observed values. The low MAPE values
(3.827% for testing and 4.856% for training) further demonstrate the model's precision in forecasting industrial
electricity consumption patterns. These results highlight the LSTM model's robust generalization ability and its
effectiveness in capturing temporal dependencies inherent in energy consumption data.
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While this study focuses on LSTM model development and validation, it is important to contextualize these results
within the broader landscape of electricity consumption forecasting methodologies. Traditional statistical approaches,
such as Autoregressive Integrated Moving Average (ARIMA) models, have long been the standard for time-series
forecasting due to their mathematical rigor and interpretability. ARIMA models excel in capturing linear temporal
dependencies and are particularly effective when consumption patterns follow stationary or near-stationary trends.
However, these methods often struggle with nonlinear relationships and complex interactions among multiple
variables—Ilimitations that become pronounced in industrial electricity forecasting where consumption is influenced
by diverse, interconnected factors.

Machine learning approaches, including Multilayer Perceptron (MLP) networks, offer improved capability in
modelling nonlinear relationships but may lack the temporal memory necessary for sequential data analysis. MLPs
process data points independently without inherently accounting for temporal order, which can limit their effectiveness
in capturing long-term dependencies characteristic of energy consumption patterns.

The LSTM architecture addresses these limitations through its specialized gating mechanisms, which enable the
model to selectively retain or discard information across extended time sequences. This capability is particularly
valuable for industrial electricity forecasting, where consumption patterns may exhibit complex temporal dependencies
spanning multiple time steps. The high R2 values (> 0.99) and low error metrics achieved in this study suggest that
the LSTM maodel effectively captures these intricate patterns.

However, the absence of direct comparative benchmarking with ARIMA, MLP, and hybrid models in the current
study represents a limitation that future research must address. Such comparative analysis would provide quantitative
evidence of the LSTM model's relative advantages and identify specific scenarios where different approaches may be
preferable. Understanding these trade-offs is essential for developing comprehensive forecasting frameworks that can
adapt to various data characteristics and operational requirements.

Accurate forecasting of industrial energy consumption represents a critical advancement toward optimizing large-
scale energy planning, managing grid loads, and developing efficient policies for electricity generation and
distribution. The implementation of deep learning methodologies, particularly LSTM networks, provides energy
planners and policymakers with powerful tools for demand forecasting, consumption optimization, and the formulation
of sustainable energy strategies. Such predictive capabilities enable proactive decision-making in resource allocation,
infrastructure development, and energy security planning.

7. Study Limitations and Future Research Directions

While the proposed model exhibits strong forecasting performance, several limitations should be acknowledged. First,
the analysis is constrained to a four-year dataset, which may limit the model’s ability to capture long-term cyclical
dynamics or structural changes in industrial electricity consumption. Second, the model does not incorporate external
variables such as weather conditions, seasonal fluctuations, technological advancements, or policy regulations, all of
which may significantly influence consumption behavior. Third, the study is based solely on historical consumption
patterns and does not account for potential disruptions arising from emerging technologies or shifts within industrial
sectors.
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Building on the findings of this research, several opportunities for future work can be identified. Future studies
should consider integrating additional explanatory variables, including meteorological data, renewable energy trends,
and policy interventions, to improve predictive capability. Comparative evaluation against alternative forecasting
models—such as ARIMA, MLP networks, hybrid ARIMA-LSTM frameworks, and ensemble-based methods—would
also be valuable for assessing relative performance across dimensions such as predictive accuracy, computational
efficiency, data dependency, robustness, interpretability, and forecasting horizon suitability. Establishing standardized
benchmark datasets for industrial electricity forecasting would further enhance reproducibility and facilitate
methodological comparison across studies.

Additionally, hybrid modelling approaches that combine LSTM architectures with other deep learning techniques
(e.g., Convolutional Neural Networks or Attention-based mechanisms) or with traditional statistical methods may yield
improved performance by leveraging complementary strengths. Extending the analysis to sector-specific forecasting,
including sub-industries such as manufacturing, mining, or construction, may provide more tailored insights for policy
and planning. Evaluating the model over longer forecasting horizons and exploring real-time deployment frameworks
would also contribute to enhancing its practical applicability in energy management and strategic decision-making.

Overall, the study highlights the considerable potential of LSTM neural networks for industrial electricity
consumption forecasting and underscores the value of continued research to refine, extend, and operationalize such
predictive approaches within dynamic energy systems.
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