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Objective: The growing energy crisis, particularly in the electricity sector, 

caused by rising demand and depletion of fossil fuel resources, necessitates 

accurate electricity consumption forecasting. This study aims to develop a 

reliable prediction model using Long Short-Term Memory (LSTM) networks 

to capture long-term temporal dependencies and nonlinear patterns in 

electricity usage. 

Methods: Key factors influencing electricity consumption were identified, and 

historical data were normalized and split into training and testing sets. A two-

layer LSTM network with ReLU activation was employed to model electricity 

consumption patterns. The model’s predictive performance was evaluated 

using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 

Coefficient of Determination (R²), and Mean Absolute Percentage Error 

(MAPE). 

Results: The LSTM model effectively captured complex temporal patterns in 

electricity consumption, producing predictions that closely matched actual 

values. The evaluation metrics demonstrated the model’s high accuracy and 

robustness compared to classical forecasting approaches. 

Conclusion: The proposed LSTM-based approach provides a practical tool for 

accurate electricity consumption forecasting. These results can support energy 

planning, optimize electricity management, and reduce the economic and social 

costs associated with overconsumption, contributing to more sustainable 

energy provision. 
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1. Introduction 

Electricity, as one of the most versatile and widely utilized forms of energy, holds paramount importance in modern 

society due to its ease of conversion, relative safety, environmental advantages, and efficient transmission capabilities. 

In 2017, electricity accounted for 11% of total final energy consumption (Tavanir Specialized Holding Company, 

2023). Beyond fulfilling the energy requirements of various economic sectors, electricity plays a pivotal role in 

enhancing quality of life, advancing social welfare, driving industrial development, and increasing national income. 

Consequently, it is regarded as a fundamental infrastructure service and a critical driver of economic growth. 

Electric power infrastructure and equipment represent essential public assets, with their development having a 

direct and measurable impact on economic progress. This relationship is particularly pronounced in developing 

countries, where the success of industrial initiatives and improvements in public welfare are heavily dependent on the 

expansion and reliability of the electricity sector (Shirsath & Singh, 2010). Moreover, ensuring a stable and sustainable 

electricity supply requires meticulous planning and accurate consumption forecasting. The increasing number of 

electricity consumers, as illustrated in Figure 1, underscores the growing demand for electricity and the necessity of 

effective management strategies (Tavanir Specialized Holding Company, 2023(. 

 

 

Figure 1. Electricity Consumer Growth Index.   

 

Numerous studies have been conducted in recent years to identify the key parameters influencing electricity 

consumption growth. These studies indicate that factors such as population dynamics, Gross Domestic Product (GDP), 

electricity tariffs, and consumption control policies (including the number of consumers) are among the most 

significant determinants of electricity consumption patterns (Edomah, 2021). 
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However, electricity consumption has exhibited a persistent upward trajectory in recent years, driven by factors 

including population growth, urbanization, improved living standards, tariff adjustments, climate variations, and the 

expansion of industrial and commercial activities. Notably, this trend has continued even during periods of low or 

negative economic growth, and the implementation of targeted subsidy reform policies has had minimal impact on 

curbing consumption growth. 

Without fundamental reforms in electricity consumption management, the country faces substantial economic and 

social consequences. The rapid escalation of energy consumption in Iran has raised serious concerns regarding the 

nation's capacity to maintain its energy export potential in the coming decades (Khiabani, 2016). 

The electricity industry serves as a critical infrastructure sector underpinning both industrial advancement and 

social welfare provision. Given the sharp increase in electricity consumption and the growing challenges in securing 

necessary resources, the implementation of optimized consumption management solutions has become increasingly 

urgent. Achieving this optimization requires a thorough analysis of the entire electricity supply chain, from generation 

to final consumption. Forecasting electricity consumption in a power network, as depicted in Figure 2, necessitates a 

comprehensive understanding of the energy transmission pathway from generation to end-use. Electrical energy, after 

generation at power plants, is transmitted through step-up transformers and high-voltage transmission lines (765, 500, 

345, 230, and 138 kV) to reach various consumer categories. Accurate consumption prediction at each stage of this 

transmission chain contributes significantly to optimizing electricity generation and distribution ("Electric power 

distribution," n.d.). 

 

 

Figure 2. Electricity Supply Chain. 
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Figure 3. The Interconnection of Networks in the Electricity Supply Chain. 

Figure 3 provides detailed insight into the distribution network structure, illustrating the connection pathways for 

commercial, industrial, and residential consumers (Selvaraj et al., 2014). Among these consumer categories, industrial 

users play a particularly crucial role in load management due to their substantial share of total consumption and their 

operational flexibility. Precise consumption forecasting for industrial consumers, especially during peak demand 

periods, can substantially improve grid management efficiency. Industrial facilities possess the capability to minimize 

load during peak hours and shift high-consumption activities to off-peak periods. Consumption pattern prediction in 

this sector, based on the network structure shown in Figure 3, enables more effective planning for electricity generation 

and distribution. 

On the other hand, industrial consumers are notably more sensitive to power interruptions than other user 

categories. Therefore, strategic placement of industrial facilities in areas with minimal electrical disruptions becomes 

essential for ensuring operational continuity and economic efficiency. This underscores the critical importance of 

accurate consumption forecasting and proactive planning for reliable electricity supply in industrial zones. 

The implementation of consumption management policies and precise electricity demand forecasting in the 

industrial sector is therefore essential, particularly given the complex structure of the distribution network illustrated 

in the figures. Accurate consumption forecasting within this framework can contribute significantly to cost reduction, 

enhanced grid stability, and optimized electricity generation and distribution. 

This study employs the Long Short-Term Memory (LSTM) method for forecasting electricity consumption in the 

power industry. Subsequently, the model's validity is evaluated using standard error measurement metrics to assess the 

accuracy and reliability of the electricity consumption predictions. 

2. Literature Review 

In the Iranian economy, petroleum products, natural gas, and electricity are fundamental to economic stability and 

energy security. However, economic policies centered on low energy pricing have impeded consumption optimization 

and hindered productivity growth. Subsidized energy prices have resulted in increased consumption and inefficiency, 

particularly within the industrial sector. Furthermore, due to the monopolistic nature of energy transmission and limited 

storage infrastructure, electricity prices in Iran remain substantially lower than in developed nations. Empirical 
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evidence, discussed in subsequent sections, demonstrates that energy demand in Iran exhibits price and income 

inelasticity. 

Early studies on electricity demand elasticity established important baseline findings. Ang (1988) analyzed 

electricity demand across East Asian countries, revealing that nations with higher per capita income exhibit lower 

income elasticity of electricity demand. Similarly, Eltony and Mohammad (1993) found that government subsidies in 

Gulf Cooperation Council (GCC) countries resulted in inelastic electricity demand. Al-Aziz and Hawdan (1999) 

further demonstrated that price and income elasticity of energy demand varies significantly across different countries 

and economic contexts. 

Within the Iranian context, several foundational studies have examined electricity demand characteristics. Fakhraei 

(1992) and Kazemi (1996) estimated electricity demand functions for the industrial sector, both concluding that 

electricity demand in this sector demonstrates inelasticity with respect to price and income fluctuations. Subsequent 

research by Asgari (2001) and Samadi et al. (2009) reinforced these findings, showing that Iranian electricity 

consumers exhibit minimal responsiveness to price and income changes. Changi Ashtiani and Jallouli (2012) and 

Latifalipur et al. (2015) employed various econometric models to estimate electricity demand functions across 

residential and industrial sectors, consistently finding evidence of inelastic demand. Additionally, Sadegi and Ebrahimi 

(2013) identified a positive and significant relationship between financial development and electricity consumption in 

Iran. 

Recent advances in artificial intelligence and machine learning have revolutionized electricity consumption 

forecasting methodologies. Raeisi-Gahruei and Beheshti (2022) implemented a multilayer perceptron neural network 

(MLP) optimized with the Zagan algorithm for electricity consumption prediction, demonstrating superior 

performance compared to alternative heuristic algorithms. Saranj and Zolfaghari (2022) combined the Ant Colony 

Optimization (ACO) algorithm with ARIMAX-GARCH models, utilizing wavelet decomposition to forecast 

electricity consumption across different time horizons. In the domain of grid resilience, Lee et al. (2024) developed 

predictive models for power outages caused by winter storms using ensemble machine learning methods including 

Random Forest, XGBoost, and Support Vector Machines (SVM). Rizvi (2024) explored the application of SVM and 

neural networks in smart grid systems, focusing on real-time energy optimization and renewable energy integration. 

Statistical and hybrid modeling approaches have also demonstrated significant potential. Rabbi et al. (2020) 

employed the ARIMAX model incorporating external variables such as population growth and GDP to forecast 

electricity demand in Bangladesh, showing that multivariate models outperform univariate alternatives. Collino and 

Ronzio (2021) applied ARIMAX methodology to short-term and very short-term photovoltaic generation forecasting, 

integrating meteorological and satellite data as exogenous inputs. Arjmand et al. (2019) emphasized the critical role of 

data preprocessing and transformation techniques in enhancing forecast accuracy, demonstrating that Box-Cox 

transformations yield superior results compared to conventional methods. Armano and Pegoraro (2022) proposed novel 

techniques for feature importance assessment in electricity demand forecasting, facilitating interpretation of neural 

network hidden layer dynamics. 

In electricity price forecasting, Jalebi et al. (2023) utilized time series models including Ordinary Least Squares 

(OLS), GARCH, and copula methods to predict electricity prices in spot and forward markets, finding that 

trigonometric functions effectively capture seasonal price behavior. Ding et al. (2018) applied a modified gray 

prediction model to forecast electricity consumption in China, demonstrating improved accuracy relative to benchmark 

models. 

Table 1 provides a comprehensive summary of recent studies in electricity consumption forecasting, categorized 

by methodology, geographic context, and key findings. The table highlights the evolution from traditional econometric 

approaches to advanced machine learning techniques, demonstrating the increasing sophistication of forecasting 

methodologies in recent years. 
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Table 1. Literature Review. 

Reference TSA ARIMA/ARI

MAX 
ARDL ANN LSTM GARCH ML 

H

M 
EG ET ED EC FN SG 

R

E 

P

E 

I

E 

C

F 
PF 

Fakhraie 

(1992)  
✓           ✓     ✓ ✓ ✓ 

Eltony & 

Mohammad

,(1993)  
✓           ✓     ✓ ✓  

Kazemi 

(1996) 
           ✓     ✓ ✓ ✓ 

Aang 

(1998)  
✓                   

Al-Aziz & 

Hawilan 

(1999) 
✓        ✓   ✓     ✓ ✓ ✓ 

Asgari 

(2002) 
✓   ✓        ✓     ✓ ✓ ✓ 

LotfaliPour 

et al. (2004) 
✓           ✓     ✓ ✓ ✓ 

Shi & Palsk 

(2005) 
✓         ✓       ✓  ✓ 

Metcalf 

(2008) 
✓         ✓       ✓ ✓ ✓ 

Liu & Han 

(2008) 
✓       ✓  ✓         ✓ 

Wing 

(2008) 
✓         ✓       ✓ ✓ ✓ 

Samadi 

(2008) 
 ✓          ✓     ✓ ✓ ✓ 

Zhenxiang 

& Stephens 

(2010) 

   ✓    ✓ ✓  ✓ ✓       ✓ 

Ashtiani & 

Jalili (2012) 
✓           ✓     ✓ ✓ ✓ 

Sadeghi &  

Ebrahimi 

(2013) 
✓  ✓         ✓      ✓ ✓ 

LotfaliPour 

et al. (2015) 
✓       ✓    ✓     ✓ ✓ ✓ 

Ding et al. 

(2018) 
✓       ✓ ✓ ✓  ✓       ✓ 

Arjmand et 

al.(2019) 
                   

Rabbi et al. 

(2020) 
   ✓    ✓           ✓ 

Collino & 

Ronzio(202

1) 
✓ ✓       ✓       ✓    

Raeisi-

Gahruei1& 

Beheshti(20

22) 

                   

Saranj & 

Zolfaghari 

(2022) 

 ✓   ✓ ✓  ✓ ✓     ✓     ✓ 

Armano & 

Attilio 

Pegoraro 

(2022) 

   ✓               ✓ 

Jalebi et al. 

(2023) 
✓     ✓        

 
     

Rizvi 

(2024) 
   ✓    ✓      

 
✓ ✓   ✓ 

Leea et al. 

(2024) 
       ✓    ✓  

 
     

This 

research 
    ✓       ✓  

 
    ✓ 

TSA: Time Series Analysis, ARDL: Autoregressive Distributed Lag Model, ANN: Neural Networks, LSTM: Long Short-Term Memory; ML: 

Machine Learning; GARCH: Generalized Autoregressive Conditional Heteroskedasticity; HM: Hybrid Models; EG: Electricity Generation; ET: 

Electricity Transmission; ED: Electricity Distribution; EC: Electricity Consumption; FN: Fuzzy Networks; SG: Smart Grid; RE: Renewable 
Energy; PE: Price Elasticity; IE: Income Elasticity; CF: Consumption Forecasting; PF: Price Forecasting. 
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3. Methodology of the Study 

3.1 LSTM (Long Short-Term Memory) 

LSTM (Long Short-Term Memory) networks are a type of RNN that incorporate additional memory features to address 

challenges such as the vanishing and exploding gradient problems (Ghulam et al., 2019) .These networks are composed 

of interconnected blocks known as memory cells, specifically designed to tackle these issues. The memory cells contain 

gates that determine whether information should be removed from or added to the cell state, as illustrated in Error! 

Reference source not found.. By utilizing these gates, LSTMs are able to model long-term dependencies in input 

data, which is particularly beneficial for text classification tasks. Overall, LSTMs represent an advanced approach 

compared to traditional RNNs, enabling more effective handling of complex and sequential data. 

 

 

Figure 4. Architecture of Long Short-Term Memory (LSTM). 

The architecture of LSTM consists of several gates and memory cells, which enable the network to store and retain 

information over time and across different time scales (Tran et al., 2016). An LSTM has an input 𝑥𝑡, which may either 

be the output of a Convolutional Neural Network (CNN) or a direct input sequence. Additionally, the inputs ℎ𝑡−1 and 

𝑐𝑡−1 are taken from the previous time step, and the output of the LSTM at this time step is 𝑜𝑡. The LSTM also generates 

𝑐𝑡 and ℎ𝑡−1 for use in the subsequent time step. 

Forget Gate: The forget gate determines which information from the previous cell state should be discarded (Kim 

et al., 2016). This gate takes as input both the previous cell state Ct−1 and the current input 𝑥𝑡, and produces a value 

between 0 and 1 for each component of the cell state. The corresponding formula for the forget gate is shown in formula 

(1): 

Input Gate: The input gate regulates the amount of new information that should be added to the cell state. This gate 

calculates two values: the candidate values 𝐶𝑡̃ (the candidate new cell state) and the input gate 𝑖𝑡, which determines 

the extent to which the candidate values should be incorporated into the cell state. The corresponding formulas for the 

input gate are given by formulas (2) and (3): 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝐶𝑡̃ = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 
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The input gate, denoted as 𝑖𝑡 , determines the extent to which the candidate cell state should be added to the current 

cell state. The candidate new cell state is represented by 𝐶𝑡̃. The weight matrices for the input gate and the candidate 

cell state are denoted as 𝑊𝑖  & 𝑊𝑐 , respectively, while their corresponding bias terms are represented by 𝑏𝑖   & 𝑏𝐶 . The 

activation functions used in the process include the sigmoid function 𝜎 and the hyperbolic tangent function (tanh), 

which play crucial roles in regulating the flow of information within the LSTM cell. 

In LSTM, (𝐶𝑡)̃  is the candidate cell state, generated using the tanh function and modulated by the input gate 𝑖𝑡 

before updating the final cell state 𝐶𝑡. The tilde (~) notation signifies its intermediate role in the memory update 

process. 

Update Cell State: The new cell state 𝐶𝑡 is computed by combining the forget gate, the input gate, and the previous 

cell state. This is done by retaining part of the previous cell state using the forget gate and adding new information 

from the input gate and the candidate cell state. The formula for updating the cell state is given by formula (4): 

The forget gate output, 𝑓𝑡 determines how much of the previous cell state 𝐶𝑡−1 is retained, while the input gate 

output, 𝑖𝑡 regulates the contribution of the candidate cell state (𝐶𝑡)̃  to the new cell state. These mechanisms collectively 

control the flow of information and memory retention in the LSTM unit. 

Output Gate: The output gate determines the next hidden state ℎ𝑡 and the output of the LSTM cell. It combines the 

current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 to calculate the output gate 𝑜𝑡 and the final output. The 

corresponding formula for the output gate is given by formulas (5) and (6): 

Here, 𝑜𝑡 represents the output gate, which controls how much of the updated cell state contributes to the final 

output. The output gate is computed using the sigmoid activation function 𝜎, applied to a weighted sum of the previous 

hidden state ℎ𝑡−1and the current input 𝑥𝑡, along with a bias term 𝑏𝑜. The weight matrix associated with the output gate 

is denoted as 𝑊𝑜. Together, these components enable the LSTM to regulate memory updates and maintain long-term 

dependencies in sequential data. 

4. Results 

In this study, the input dataset comprises four key factors that significantly influence industrial electricity consumption: 

population, gross domestic product (GDP), industrial electricity prices, and the number of electricity subscribers. 

Electricity consumption in the industrial sector is designated as the dependent variable, meaning the model aims to 

predict its fluctuations based on variations in these independent variables. 

To enhance prediction accuracy and overall model performance, the dataset underwent a normalization process. 

This step ensured that all input variables were scaled within the same range, preventing any single variable from 

disproportionately affecting the model due to differences in unit magnitude. Normalization also facilitated faster 

convergence during training and improved the model's generalization ability. 

Following data pre-processing, the dataset was split into two subsets: a training set (comprising 80% of the data) 

and a testing set (comprising 20%). The LSTM model was trained using the training dataset, enabling it to learn the 

intricate relationships between the independent variables and electricity consumption patterns. 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶𝑡̃ 
 

(4) 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶𝑡̃ 
 

(5) 

ℎ𝑡 = 𝑜𝑡 . tanh(𝐶𝑡) (6) 
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The LSTM model architecture consists of two stacked LSTM layers, each containing 50 neurons. A Rectified 

Linear Unit (ReLU) activation function was employed to introduce non-linearity and enhance the model's capacity to 

capture complex patterns in the data. The first LSTM layer processes input sequences and extracts relevant features, 

which are then passed to the second LSTM layer for further refinement, ultimately generating the model's final output. 

To optimize the training process, the Adam optimization algorithm was utilized. Adam is a widely adopted 

optimization technique that integrates the benefits of both the AdaGrad and RMSProp algorithms, making it 

particularly effective for deep learning models. Additionally, the Mean Squared Error (MSE) loss function was used 

as the performance criterion during training, ensuring that the model minimizes the average squared difference between 

predicted and actual values. 

Upon completing the training phase, the trained LSTM model was used to generate predictions for both the training 

and testing datasets. These predictions were then compared against actual observed values to evaluate the model’s 

accuracy and reliability. Several evaluation metrics were employed to quantify the model’s performance, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of 

Determination (R²), and Mean Absolute Percentage Error (MAPE). These metrics provided a comprehensive 

assessment of the model’s predictive capabilities by measuring error magnitude, variance, and overall model fit. 

Figure 2, Figure 3, Figure 1, Figure 4 presents the results obtained from this method, demonstrating the 

effectiveness of the LSTM model in capturing electricity consumption trends and providing accurate forecasts. 

 

 

 

 

 

Figure 2. Prediction Results Using the 

LSTM Method for Test Data 

 

Figure 1. Prediction Results Using the LSTM 

Method for Training Data 

 

Figure 4. Comparison of LSTM-Predicted Test Data 

with Actual Values  

 

Figure 3. Comparison of LSTM-Predicted Training 

Data with Actual Values 
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5. Model Evaluation Metrics 

In the previous chapters, the forecasting methods for electricity consumption and the modeling techniques used were 

reviewed. Now, to evaluate the models, four error metrics, namely the Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Coefficient of Determination (R²), and Root Mean Squared Error (RMSE), have been used 

for comparison. Each of these metrics is computed using the following formulas: 

(7) 𝑀𝐴𝐸 =
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛
 

(8) 𝑀𝐴𝑃𝐸 = ∑ (
(|𝑦𝑖 − 𝑦𝑖̂|)

𝑦𝑖

) × 100 

(9) 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑖

∑ (𝑦𝑖 − 𝑦𝑖̅)𝑖

 

(10) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑖

𝑛
 

In error metrics such as MAE, RMSE, and 𝑅2  𝑦𝑖  represents the actual data points, 𝑦𝑖̂ denotes the predicted values, 

and n indicates the total number of data points. Error! Reference source not found. shows the error metrics (MAE, 

MAPE, R², and RMSE) for the LSTM model on both training and testing data. 

Table 2. Error Metrics for the LSTM Model for Training and Test Data. 

Error Test Train 

MAE 0.9715 0.836 

MAPE 3.827% 4.856% 

R² 0.992 0.994 

RMSE 1.364 1.412 

The analysis and results demonstrate that the electricity consumption forecasting using this method yields highly 

accurate and dependable predictions, making it a robust approach for forecasting energy demand. 

6. Conclusion 

This study utilized data spanning from 2019 to 2022 (1398–1401 Solar Hijri calendar) to forecast electricity 

consumption in the industrial sector using Long Short-Term Memory (LSTM) neural networks. The results 

demonstrate that the LSTM-based approach delivers highly accurate and reliable predictions by effectively capturing 

complex nonlinear relationships among key influencing variables, including population, gross domestic product 

(GDP), electricity price, and the number of subscribers. 

Performance evaluation using multiple statistical metrics—Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Coefficient of Determination (R²), and Root Mean Squared Error (RMSE)—confirmed the 

model's exceptional predictive capability. Specifically, the model achieved R² values exceeding 0.99 for both training 

and testing datasets, indicating strong alignment between predicted and observed values. The low MAPE values 

(3.827% for testing and 4.856% for training) further demonstrate the model's precision in forecasting industrial 

electricity consumption patterns. These results highlight the LSTM model's robust generalization ability and its 

effectiveness in capturing temporal dependencies inherent in energy consumption data. 
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While this study focuses on LSTM model development and validation, it is important to contextualize these results 

within the broader landscape of electricity consumption forecasting methodologies. Traditional statistical approaches, 

such as Autoregressive Integrated Moving Average (ARIMA) models, have long been the standard for time-series 

forecasting due to their mathematical rigor and interpretability. ARIMA models excel in capturing linear temporal 

dependencies and are particularly effective when consumption patterns follow stationary or near-stationary trends. 

However, these methods often struggle with nonlinear relationships and complex interactions among multiple 

variables—limitations that become pronounced in industrial electricity forecasting where consumption is influenced 

by diverse, interconnected factors. 

Machine learning approaches, including Multilayer Perceptron (MLP) networks, offer improved capability in 

modelling nonlinear relationships but may lack the temporal memory necessary for sequential data analysis. MLPs 

process data points independently without inherently accounting for temporal order, which can limit their effectiveness 

in capturing long-term dependencies characteristic of energy consumption patterns. 

The LSTM architecture addresses these limitations through its specialized gating mechanisms, which enable the 

model to selectively retain or discard information across extended time sequences. This capability is particularly 

valuable for industrial electricity forecasting, where consumption patterns may exhibit complex temporal dependencies 

spanning multiple time steps. The high R² values (> 0.99) and low error metrics achieved in this study suggest that 

the LSTM model effectively captures these intricate patterns. 

However, the absence of direct comparative benchmarking with ARIMA, MLP, and hybrid models in the current 

study represents a limitation that future research must address. Such comparative analysis would provide quantitative 

evidence of the LSTM model's relative advantages and identify specific scenarios where different approaches may be 

preferable. Understanding these trade-offs is essential for developing comprehensive forecasting frameworks that can 

adapt to various data characteristics and operational requirements. 

Accurate forecasting of industrial energy consumption represents a critical advancement toward optimizing large-

scale energy planning, managing grid loads, and developing efficient policies for electricity generation and 

distribution. The implementation of deep learning methodologies, particularly LSTM networks, provides energy 

planners and policymakers with powerful tools for demand forecasting, consumption optimization, and the formulation 

of sustainable energy strategies. Such predictive capabilities enable proactive decision-making in resource allocation, 

infrastructure development, and energy security planning. 

7. Study Limitations and Future Research Directions 

While the proposed model exhibits strong forecasting performance, several limitations should be acknowledged. First, 

the analysis is constrained to a four-year dataset, which may limit the model’s ability to capture long-term cyclical 

dynamics or structural changes in industrial electricity consumption. Second, the model does not incorporate external 

variables such as weather conditions, seasonal fluctuations, technological advancements, or policy regulations, all of 

which may significantly influence consumption behavior. Third, the study is based solely on historical consumption 

patterns and does not account for potential disruptions arising from emerging technologies or shifts within industrial 

sectors. 
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Building on the findings of this research, several opportunities for future work can be identified. Future studies 

should consider integrating additional explanatory variables, including meteorological data, renewable energy trends, 

and policy interventions, to improve predictive capability. Comparative evaluation against alternative forecasting 

models—such as ARIMA, MLP networks, hybrid ARIMA-LSTM frameworks, and ensemble-based methods—would 

also be valuable for assessing relative performance across dimensions such as predictive accuracy, computational 

efficiency, data dependency, robustness, interpretability, and forecasting horizon suitability. Establishing standardized 

benchmark datasets for industrial electricity forecasting would further enhance reproducibility and facilitate 

methodological comparison across studies. 

Additionally, hybrid modelling approaches that combine LSTM architectures with other deep learning techniques 

(e.g., Convolutional Neural Networks or Attention-based mechanisms) or with traditional statistical methods may yield 

improved performance by leveraging complementary strengths. Extending the analysis to sector-specific forecasting, 

including sub-industries such as manufacturing, mining, or construction, may provide more tailored insights for policy 

and planning. Evaluating the model over longer forecasting horizons and exploring real-time deployment frameworks 

would also contribute to enhancing its practical applicability in energy management and strategic decision-making. 

Overall, the study highlights the considerable potential of LSTM neural networks for industrial electricity 

consumption forecasting and underscores the value of continued research to refine, extend, and operationalize such 

predictive approaches within dynamic energy systems. 
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