Abbracciavento, F., Zinnari, F., Formentin, S., Bianchessi, A. G., & Savaresi, S. M. (2023). Multi-intersection traffic signal control: A decentralized MPC-based approach. IFAC Journal of Systems and Control, 23, 100214.
Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). SUMO–simulation of urban mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind.
Boillot, F., Midenet, S., & Pierrelee, J. C. (2006). The real-time urban traffic control system CRONOS: Algorithm and experiments. Transportation Research Part C: Emerging Technologies, 14(1), 18-38.
Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., ... & Li, Z. (2020, April). Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3414-3421).
Ge, H., Gao, D., Sun, L., Hou, Y., Yu, C., Wang, Y., & Tan, G. (2021). Multi-agent transfer reinforcement learning with multi-view encoder for adaptive traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12572-12587.
Guo, Q., Li, L., & Ban, X. J. (2019). Urban traffic signal control with connected and automated vehicles: A survey. Transportation research part C: emerging technologies, 101, 313-334.
Guo, X., Yu, Z., Wang, P., Jin, Z., Huang, J., Cai, D., ... & Hua, X. (2021). Urban traffic light control via active multi-agent communication and supply-demand modeling. IEEE Transactions on Knowledge and Data Engineering.
Ikidid, A., El Fazziki, A., & Sadgal, M. (2021a). A Fuzzy Logic Supported Multi-Agent System For Urban Traffic And Priority Link Control. JUCS: Journal of Universal Computer Science, 27(10).
Ikidid, A., El Fazziki, A., & Sadgal, M. (2021b). A multi-agent framework for dynamic traffic management considering priority link. International Journal of Communication Networks and Information Security, 13(2), 324-330.
Kim, J., Park, H., & Lee, M. (2024). Reinforcement learning-based adaptive traffic signal control considering vehicles and pedestrians in intersection. Journal of the Korean Institute of Industrial Engineers.
Li, Z., Yu, H., Zhang, G., Dong, S., & Xu, C. Z. (2021). Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 125, 103059.
Liu, X., & Wang, Y. (2024). A max pressure algorithm for traffic signals considering pedestrian queues. arXiv.
Soon, K. L., Lim, J. M. Y., & Parthiban, R. (2019). Coordinated traffic light control in cooperative green vehicle routing for pheromone-based multi-agent systems. Applied Soft Computing, 81, 105486.
Wang, J., Li, Y., & Zeng, X. (2024). Enhancing urban intersection efficiency: Visible light communication and learning-based control for traffic signal optimization and vehicle management. Symmetry, 16(2), 240.
Wang, T., Cao, J., & Hussain, A. (2021). Adaptive Traffic Signal Control for large-scale scenario with Cooperative Group-based Multi-agent reinforcement learning. Transportation research part C: emerging technologies, 125, 103046.
Wang, Y., Xu, T., Niu, X., Tan, C., Chen, E., & Xiong, H. (2020). STMARL: A spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control. IEEE Transactions on Mobile Computing, 21(6), 2228-2242.
Wang, Z., Bian, Y., Shladover, S. E., Wu, G., Li, S. E., & Barth, M. J. (2019). A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intelligent Transportation Systems Magazine, 12(1), 4-24.
Wu, T., Zhou, P., Liu, K., Yuan, Y., Wang, X., Huang, H., & Wu, D. O. (2020). Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Transactions on Vehicular Technology, 69(8), 8243-8256.
Xu, M., An, K., Vu, L. H., Ye, Z., Feng, J., & Chen, E. (2019). Optimizing multi-agent based urban traffic signal control system. Journal of Intelligent Transportation Systems, 23(4), 357-369.
Yang, S. (2023). Hierarchical graph multi-agent reinforcement learning for traffic signal control. Information Sciences, 634, 55-72.
Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., ... & Li, Z. (2019, May). Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In The world wide web conference (pp. 3620-3624).
Zhang, H., Li, Z., & Chen, Z. (2024). MoveLight: Enhancing traffic signal control through movement-centric deep reinforcement learning. arXiv.
Zhang, Q., & Liu, F. (2024). A novel pedestrian road crossing simulator for dynamic traffic light scheduling systems. Transportmetrica B: Transport Dynamics, 12(1), 115-131.
Zhang, X. M., Han, Q. L., Ge, X., Ding, D., Ding, L., Yue, D., & Peng, C. (2019). Networked control systems: A survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica, 7(1), 1-17.
Zhu, F., Lv, Y., Chen, Y., Wang, X., Xiong, G., & Wang, F. Y. (2019). Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4063-4071.