Al Rakib, A. (2024). Strategies for Green Supply Chain Management: A Comprehensive Review for Environmental Sustainability. Journal of Optimization and Supply Chain Management JOSCM 2024, 1(1), 40–49. https://doi.org/10.22034/iss.2024.2479
Ammar, M., Haleem, A., Javaid, M., Walia, R., & Bahl, S. (2021). Improving material quality management and manufacturing organizations system through Industry 4.0 technologies. Materials Today: Proceedings, 45, 5089–5096. https://doi.org/10.1016/j.matpr.2021.01.585
Aprijal, R., Siregar, I. W., Siahaan, A. P. U., & Marlina, L. (2024). Utilization of Data Analytics to Enhance Operational Efficiency in Manufacturing Companies. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 514–521. https://doi.org/10.47709/cnahpc.v6i2.3723
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Chatterjee, S., Chaudhuri, R., Gupta, S., Sivarajah, U., & Bag, S. (2023). Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm. Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122824
Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., Roubaud, D., & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics. https://doi.org/http://doi.org/10.1016/j.ijpe.2019.107599
Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
Galeh, M. N., & Sahraei, S. (2024). Impact of Blockchain Implementation on Enhancing Customer Satisfaction in Organizational Supply Chains: Dairy Product Manufacturers Case Study. Journal of Optimization and Supply Chain Management JOSCM 2024, 1(2), 98–109. https://doi.org/10.22034/ISS.2024.7919.1011
Ghofrani, F., He, Q., Goverde, R. M. P., & Liu, X. (2018). Recent applications of big data analytics in railway transportation systems: A survey. Transportation Research Part C: Emerging Technologies, 90, 226–246. https://doi.org/10.1016/j.trc.2018.03.010
Guest, G., Bunce, A., & Johnson, L. (2006). How Many Interviews Are Enough? An Experiment with Data Saturation and Variability. Field Methods, 18(1), 59–82. https://doi.org/10.1177/1525822X05279903
Hasan, R., Kamal, M. M., Daowd, A., Eldabi, T., Koliousis, I., & Papadopoulos, T. (2024). Critical analysis of the impact of big data analytics on supply chain operations. Production Planning and Control, 35(1), 46–70. https://doi.org/10.1080/09537287.2022.2047237
Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138. https://doi.org/10.1016/j.dss.2020.113382
Khan, M. (2019). Challenges with big data analytics in service supply chains in the UAE. Management Decision, 57(8), 2124–2147. https://doi.org/10.1108/MD-06-2018-0669
Koot, M., Mes, M. R. K., & Iacob, M. E. (2021). A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics. Computers and Industrial Engineering, 154. https://doi.org/10.1016/j.cie.2020.107076
Lasanthika, W. J. A. J. M., & Wickramasinghe, C. N. (2020). Readiness to Adopt Big Data Analytics in Private Sector Companies. Wayamba Journal of Management, 11(2), 74. https://doi.org/10.4038/wjm.v11i2.7474
Lee, W. C., Sayuti, N., Hamzah, M. I., Wahab, S. N., & Tan, S. Y. (2020). Big Data Analytics Adoption: An Empirical Study in Malaysia Warehousing Sector. International Journal of Logistics Systems and Management, 1(1), 1. https://doi.org/10.1504/ijlsm.2020.10038507
Lutfi, A., Alsyouf, A., Almaiah, M. A., Alrawad, M., Abdo, A. A. K., Al-Khasawneh, A. L., Ibrahim, N., & Saad, M. (2022). Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability (Switzerland), 14(3). https://doi.org/10.3390/su14031802
Mageto, J. (2021). Big data analytics in sustainable supply chain management: A focus on manufacturing supply chains. In Sustainability (Switzerland) (Vol. 13, Issue 13). MDPI. https://doi.org/10.3390/su13137101
Mahmoudian, M., Zanjani, S. M., Shahinzadeh, H., Kabalci, Y., Kabalci, E., & Ebrahimi, F. (2023). An Overview of Big Data Concepts, Methods, and Analytics: Challenges, Issues, and Opportunities. Proceedings - 2023 IEEE 5th Global Power, Energy and Communication Conference, GPECOM 2023, 554–559. https://doi.org/10.1109/GPECOM58364.2023.10175760
Maroufkhani, P., Wagner, R., Wan Ismail, W. K., Baroto, M. B., & Nourani, M. (2019). Big data analytics and firm performance: A systematic review. In Information (Switzerland) (Vol. 10, Issue 7). MDPI AG. https://doi.org/10.3390/INFO10070226
Mikalef, P., & Krogstie, J. (2020). Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems, 29(3), 260–287. https://doi.org/10.1080/0960085X.2020.1740618
Moktadir, M. A., Ali, S. M., Paul, S. K., & Shukla, N. (2019). Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh. Computers and Industrial Engineering, 128, 1063–1075. https://doi.org/10.1016/j.cie.2018.04.013
Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information and Management, 42(1), 15–29. https://doi.org/10.1016/j.im.2003.11.002
Patrucco, A. S., Marzi, G., & Trabucchi, D. (2023). The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions. Technovation, 126. https://doi.org/10.1016/j.technovation.2023.102814
Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 42–47. https://doi.org/10.1109/CTS.2013.6567202
Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00329-2
Sivarajah, U., Kumar, S., Kumar, V., Chatterjee, S., & Li, J. (2024). A study on big data analytics and innovation: From technological and business cycle perspectives. Technological Forecasting and Social Change, 202. https://doi.org/10.1016/j.techfore.2024.123328
Sun, S., Cegielski, C. G., Jia, L., & Hall, D. J. (2018). Understanding the Factors Affecting the Organizational Adoption of Big Data. In Journal of Computer Information Systems (Vol. 58, Issue 3, pp. 193–203). Taylor and Francis Inc. https://doi.org/10.1080/08874417.2016.1222891
Xu, J., Pero, M., & Fabbri, M. (2023). Unfolding the link between big data analytics and supply chain planning. Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122805
Yoshikuni, A. C., Dwivedi, R., Zhou, D., & Wamba, S. F. (2023). Big data and business analytics enabled innovation and dynamic capabilities in organizations: Developing and validating scale. International Journal of Information Management Data Insights, 3(2). https://doi.org/10.1016/j.jjimei.2023.100206