Enhancing Supply Chain Performance and Agility in the Healthcare Industry Through Big Data Analytics: A Complex Adaptive Systems Theory Approach

Document Type : Review Paper

Author

Kwadaso Estate, NO. Y2, Arthur Street

Abstract

In the absence of robust data integration and analytics framework, healthcare facilities are faced with the difficulty of aligning inventory with demand accurately. This paper investigated the role of BDA capacity in enhancing supply chain performance (SCP) in the health industry of Ghana through supply chain agility (SCA) in the midst of supply chain complexity (SCC). The cross-sectional study therefore surveyed 288 heads of the supply chain and logistic departments of health facilities in the Ashanti Region of Ghana. The data was preliminary analyzed using IBM SPSS 25. Reflective constructs were validated through confirmatory factor analysis (CFA) using LISREL 8.50. The hypotheses were tested using Hayes PROCESS model 14. The findings show that BDA capability and SCA both positively impact SCP, with SCA partially mediating this relationship. SCC does not significantly moderate the indirect effect of BDA capability on SCP through SCA. Overall, BDA capability improves SCP both directly and indirectly through SCA, and while SCC has a direct effect on SCP, it does not significantly alter the mediation pathway. In conclusion, BDA capability enhances SCP directly and through SCA, reinforcing agility's critical role. While SCC impacts SCP directly, it does not strengthen the BDA–SCA–SCP pathway, highlighting the need for strategic collaboration efforts. Managerially, enhancing BDA capabilities significantly improves SCP, both directly and through SCA, making agility essential for data-driven performance gains. While SCC impacts SCP directly, it does not strengthen the BDA–SCA–SCP pathway, requiring strategic collaboration efforts. Investing in analytics and agility helps healthcare organizations navigate industry demands and operational uncertainties effectively.

Keywords


Abuosi, A. A., & Braimah, M. (2019). Patient satisfaction with the quality of care in Ghana’s health-care institutions: A disaggregated approach. International Journal of Pharmaceutical and Healthcare Marketing, 13(2), 160-170. https://doi.org/10.1108/IJPHM-08-2018-0043
Adua, E., Frimpong, K., Li, X., & Wang, W. (2017). Emerging issues in public health: a perspective on Ghana’s healthcare expenditure, policies and outcomes. EMPMA Journal, 8(3), 197–206. https://doi.org/10.1007/s13167-017-0109-3
Ahmad, M. A., Baryannis, G., & Hill, R. (2024). Defining Complex Adaptive Systems: An Algorithmic Approach. Systems, 12(2), 1-18. https://doi.org/10.3390/systems12020045
Akin-Ateş, M., Suurmond, R., Luzzini, D., & Krause, D. (2022). Order from chaos: a meta-analysis of supply chain complexity and firm performance. Journal of Supply Chain Management, 58(1), 3–30.
Al-Darras, O. M., & Tanova, C. (2022). From Big Data Analytics to Organizational Agility: What Is the Mechanism? SAGE Open, 12(2)., 12(2), 1-18. https://doi.org/10.1177/21582440221106170
Al-Darras, O. M., & Tanova, C. (2022). From Big Data Analytics to Organizational Agility: What Is the Mechanism? SAGE Open, 6(2), 1-18. https://doi.org/10.1177/2158244022110617
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689. https://doi.org/10.1186/s12909-023-04698-z
Al-Rawashdeh, O. M., Jawabreh, O., & Ali, B. J. (2022). Supply Chain Management and Organizational Performance: The Moderating Effect of Supply Chain Complexity. Information S ciences Letters: An International Journal, 12(3), 1673-1684. https://doi.org/10.18576/isl/120351
Al-Shbail, T., Maghayreh, A., & Awad, M. (2022). Big Data Analytics for Supply Chain Sustainability: Amid the Outbreak of the COVID-19 Pandemic. World Customs Journal, 15(2), 61-72.
Amporfro, D. A., Boah, M., Yingqi, S., Wabo, T. M., Zhao, M., Nkondjock, V. R., & Wu, Q. (2021). Patients satisfaction with healthcare delivery in Ghana. BMC Health Services Research, 21(1), 700-722. https://doi.org/10.1186/s12913-021-06717-5
Araja, D. (2022). Resilience and Complex Adaptive Systems: A Perspective on Health. Journal of Business Management, 20(1), 23-35. https://doi.org/10.32025/JBM22006
Asiamah, N., Mensah, H. K., & Oteng-Abayie, E. (2017). General, Target, and Accessible Population: Demystifying the Concepts for Effective Sampling. The Qualitative Report (TQR), 22(6), 1607-1621. https://doi.org/10.46743/2160-3715/2017.2674
Awrahman, B. J., Fatah, C. A., & Hamaamin, M. Y. (2022). A Review of the Role and Challenges of Big Data in Healthcare Informatics and Analytics. Computational Intelligence Neuroscience, 1, 5317760. https://doi.org/10.1155/2022/5317760
Awwad, M., Kulkarni, P., Bapna, R., & Marathe, A. (2018). Big Data Analytics in Supply Chain: A Literature Review. Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 418-425). Washington DC, USA: IEOM Society International.
Bag, S., Dhamija, P., Singh, R. K., Rahman, M. S., & Sreedharan, R. V. (2023). Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research, 154(1), 113315. https://doi.org/10.1016/j.jbusres.2022.113315
Bahrami, M., Shokouhyar, S., & Seifian, A. (2022). Big data analytics capability and supply chain performance: the mediating roles of supply chain resilience and innovation. Modern Supply Chain Research and Applications, 4(1), 62-84. https://doi.org/10.1108/MSCRA-11-2021-0021
Bahrami, M., Shokouhyar, S., & Seifian, A. (2022). Big data analytics capability and supply chain performance: the mediating roles of supply chain resilience and innovation. Modern Supply Chain Research and Applications, 4(1), 62-84. https://doi.org/10.1108/MSCRA-11-2021-0021
Balkhi, B., Alshahrani, A., & Khan, A. (2022). Just-in-time approach in healthcare inventory management: Does it really work? Saudi Pharmaceutical Journal, 30(12), 1830–1835. https://doi.org/10.1016/j.jsps.2022.10.013
Barhmi, A. (2022). Understanding the Role of Agility and Responsiveness Capabilities in Achieving Supply Chain Performance The Case of Manufacturing Firms. International Journal of Managing Value and Supply Chains (IJMVSC), 13(3), 1-20. https://doi.org/10.5121/ijmvsc.2022.13301
Barlette, Y., & Baillette, P. (2020). Big data analytics in turbulent contexts: towards organizational change for enhanced agility. Production Planning & Control, 7(3), 1-19. https://doi.org/10.1080/09537287.2020.1810755
Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. Journal of big data, 9(1), 1-3. https://doi.org/10.1186/s40537-021-00553-4
Benzidia, S., Bentahar, O., Husson, J., & Makaoui, N. (2024). Big data analytics capability in healthcare operations and supply chain management: the role of green process innovation. Annals of Operations Research, 333(1), 1077–1101. https://doi.org/10.1007/s10479-022-05157-6
Bilal, A. I., Bititci, U. S., & Fenta, T. G. (2024). Challenges and the Way Forward in Demand-Forecasting Practices within the Ethiopian Public Pharmaceutical Supply Chain. Pharmacy (Basel), 12(3), 86. https://doi.org/10.3390/pharmacy12030086
Bozarth, C. C., Warsing, D. P., Flynn, B. B., & Flynn, J. E. (2009). The impact of supply chain complexity on manufacturing plant performance. Journal of Operations Management, 27(1), 78–93.
Bozarth, C., & Edwards, S. (1997). The impact of market requirements focus and manufacturing characteristics focus on plant performance. Journal of Operations Management, 15(3), 161-180. https://doi.org/10.1016/S0272-6963(97)00002-8
Çetindaş, A., Akben, İ., Özcan, C., Kanuşağı, İ., & Öztürk, O. (2023). The effect of supply chain agility on firm performance during COVID-19 pandemic: the mediating and moderating role of demand stability. Supply Chain Forum: An International Journal, 24(3), 307-318. https://doi.org/10.1080/16258312.2023.2167465
Çetindaş, A., Akben, İ., Özcan, C., Kanuşağı, İ., & Öztürk, O. (2023). The effect of supply chain agility on firm performance during COVID-19 pandemic: the mediating and moderating role of demand stability. Supply Chain Forum: An International Journal, 4(2), 132-242. https://doi.org/10.1080/16258312.2023.2167465
Chand, P., Kumar, A., Thakkar, J., & Ghosh, K. K. (2022). Direct and mediation effect of supply chain complexity drivers on supply chain performance: an empirical evidence of organizational complexity theory. International Journal of Operations & Production Management, 42 (6), 797-825. https://doi.org/10.1108/IJOPM-11-2021-0681
Chen, C.-J. (2019). Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage. Management Decision, 57(7), 1511-1534. https://doi.org/10.1108/MD-12-2017-1236
Chen, P.-T., Lin, C.-L., & Wu, W.-N. (2020). Big data management in healthcare: Adoption challenges and implications. International Journal of Information Management, 53, 102078. https://doi.org/10.1016/j.ijinfomgt.2020.102078
Cheng, J. H., & Lu, K. L. (2018). The Impact of Big Data Analytics Use on Supply Chain Performance: Efficiency and Adaptability as Mediators. Proceedings of The 18th International Conference on Electronic Business (pp. 626-633). Guilin, China: ICEB.
Choi, T. Y. (2023). Supply Networks as a Complex Adaptive System',. In The Nature of Supply Networks (Online ed.). New York: Oxford Academic. https://doi.org/10.1093/oso/9780197673249.003.0008
Choi, T. Y., Dooley, K. J., & Rungtusanatham, M. (2001). Supply networks and complex adaptive systems: control versus emergence. Journal of Operations Management, 19(3), 351–366.
Closs, D. J., Jacobs, M. A., Swink, M., & Webb, G. S. (2008). Toward a theory of competencies for the management of product complexity: six case studies. Journal of Operations Management, 26(5), 590–610.
Corte-Real, N., Ruivo, P., & Oliveira, T. (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: is data quality a way to extract business value? Information & Management, 57(1), 103-141.
da Silveira, G. 2. (2005). Market priorities, manufacturing configuration and business performance: an empirical analysis of the order winners framework. Journal of Operations Management, 23(6), 662–675.
Dubey, R., Bryde, D. J., Dwivedi, Y. K., Graham, G., & Foropon, C. (2022). Impact of Artificial Intelligence-Driven Big Data Analytics Culture on Agility and Resilience in Humanitarian Supply Chain: A Practice-Based View. International Journal of Production Economics, 15(1), 1-15. https://doi.org/10.1016/j.ijpe.2022.108618
Dubey, R., Gunasekaran, A., & Childe, S. J. (2019). Big data analytics capability in supply chain agility. Management Decision, 57(8), 2092-2112.
Ellis, B., & Herbert, S. I. (2011). Complex adaptive systems (CAS): an overview of key elements, characteristics and application to management theory. Information of Primary Care, 19(1), 33-37. https://doi.org/10.14236/jhi.v19i1.791
Fernando, Y., Chidambaram, R. R., & Wahyuni-TD, I. S. (2018). The impact of Big Data analytics and data security practices on service supply chain performance. Benchmarking: An International Journal, 25(9), 4009-4034.
Galankashi, M. R., Rahmani, F., Rahmani, A., Bozorgi-Amiri, A., & Imani, D. M. (2024). Performance Measurement with Lean, Agile and Green Considerations: An Interval-Valued Fuzzy TOPSIS Approach in Healthcare Industry. International Journal of Supply and Operations Management, 11(1), 114-131. https://doi.org/10.22034/ijsom.2023.109689.2581
Gligor, D. M., Esmark, C. L., & Holcomb, M. (2015). Performance outcomes of supply chain agility: When should you be agile? Journal of Operations Management, 1(1), 33-34. https://doi.org/10.1016/j.jom.2015.10.008
Goffin, K., Lemke, F., & Szwejczewski, M. (2006). An exploratory study of ‘‘close’’ supplier-manufacturer relationships. Journal of Operations Management, 24(2), 189–209.
Gopichand, G., Sarath, T., Dumka, A., Goyal, H. R., Singh, R., Gehlot, A., Gupta, L. R., Thakur, A. K., Priyadarshi, N., & Twala, B. (2024). Use of IoT sensor devices for efficient management of healthcare systems: a review. Discover Internet of Things, 4(8), 132-153. https://doi.org/10.1007/s43926-024-00062-9
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S., Childe, S., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70(1), 308-317.
Güner, H. M., Çemberci, M., & Civelek, M. E. (2018). The Effect of Supply Chain Agility on Firm Performance. Journal of International Trade, Logistics and Law, 4(1), 25-34.
Güneş, Ö. A. (2023). The Role of Big Data in Logistics and Supply Chain Management. threadinmotion. Retrieved 10 7, 2023, from https://www.threadinmotion.com/en/blog/the-role-of-big-data-in-logistics-and-supply-chain-management
Hair, J. F., Hult, G. T., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Evaluation of Reflective Measurement Models. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business. Springer, Cham.
Hair, J. F., Hult, T., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks: Sage Publication.
Hammouri, Q., Atobishi, T., Altememi, A., Al-Zagheer, H., & Khataybeh, H. (2022). The impact of investing in Big Data Analytics (BDA) in enhancing organizational agility and Performance. Central European Management Journal, 30(4), 1090-1093. https://doi.org/10.57030/23364890.cemj.30.4.109
Hasan, R., Kamal, M. M., Ahmad Daowd, T. E., Koliousis, I., & Papadopoulos, T. (2024). Critical analysis of the impact of big data analytics on supply chain operations. The Management of Operations, 35(1), 46-70. https://doi.org/10.1080/09537287.2022.2047237
Hasan, R., Kamal, M. M., Daowd, A., Eldabi, T., Koliousis, I., & Papadopoulos, T. (2022). Critical analysis of the impact of big data analytics on supply chain operations. Production Planning & Control, 4(2), 1-26. https://doi.org/10.1080/09537287.2022.2047237
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Huang, G. Q., Zhang, X. Y., & Liang, L. (2005). Towards integrated optimal configuration of platform products, manufacturing processes, and supply chains. Journal of Operations Management, 23(3/4), 267–290.
Hyun, Y., Kamioka, T., & Hosoya, R. (2022). Improving Agility Using Big Data Analytics: The Role of Democratization Culture. Pacific Asia Journal of the Association for Information Systems, 12(2), 35-63. https://doi.org/10.17705/1pais.12202
Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829-846.
Jamjumrus, T., & Sritragool, N. (2019). Investigating the Impact of Supply Chain Agility, Government Regulations and Supply Chain Efficiency on Business Performance: Mediating Role of Cost Leadership. International Journal of Supply Chain Management, 8(4), 399-407.
Javaid, M., Haleem, A., & Singh, R. P. (2024). Health informatics to enhance the healthcare industry's culture: An extensive analysis of its features, contributions, applications and limitations. Informatics and Health, 1(2), 123-148. https://doi.org/10.1016/j.infoh.2024.05.001
Jha, A. K., Agi, M. A., & Ngai, E. W. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138(1), 113-382.
Jha, A. K., Agi, M. A., & Ngai, E. W. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138(1), 113-382.
Jindal, A., Sharma, S. K., Sangwan, K. S., & Gupta, G. (2021). Modelling Supply Chain Agility Antecedents Using Fuzzy DEMATEL. Procedia CIRP, 98(1), 436-441. https://doi.org/10.1016/j.procir.2021.01.130
Khalil, M. L., Aziz, N. A., Ariffin, A. A., & Ngah, A. H. (2023). Big Data Analytics Capability and Firm Performance in the Hotel Industry: The Mediating Role of Organizational Agility. WSEAS Transactions on Business and Economics, 20(1), 440-453. https://doi.org/10.37394/23207.2023.20.40
Khatib, I. A., Shamayleh, A., & Ndiaye, M. (2024). Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions. Informatics, 11(3), 1-47. https://doi.org/10.3390/informatics11030047
Kipo-Sunyehzi, D. D. (2021). Quality healthcare services under National Health Insurance Scheme in Ghana: perspectives from health policy implementers and beneficiaries. Public Administration and Policy: An Asia-Pacific Journal, 24(3), 320-332. https://doi.org/10.1108/PAP-08-2021-0047
Krejcie, R. V., & Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30(1), 607-610.
Kumar, S., & Singh, M. (2019). Big Data Analytics for Healthcare Industry: Impact, Applications, and Tools. Big Data Mining and Anyalytics, 2(1), 48-57. https://doi.org/10.26599/BDMA.2018.9020031
Mekonen, Z. T., Fenta, T. G., Nadeem, S. P., & Cho, D. J. (2024). Global Health Commodities Supply Chain in the Era of COVID-19 Pandemic: Challenges, Impacts, and Prospects: A Systematic Review. Journal of Multidisciplinary Healthcare, 17(1), 1523–1539. https://doi.org/10.2147/JMDH.S448654
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 30(2), 272-298.
Nazempour, R., Yang, J., & Javaid, Z. (2019). Effect of Supply Chain Agility Dimensions on Supply Chain Performance: A Case of Iranian SMEs. ICBDT: International Conference on Big Data Technologies, 2019, August 28–30 (pp. 1-5). Jinan, China: Association for Computing Machinery. https://doi.org/10.1145/3358528.3358538
Nodoust, A. (2024). Assessment of a Hybrid Machine Learning Algorithm in Healthcare Management for Predicting Diabetes Disease. International Journal of Supply and Operations Management, 11(4), 462-482. https://doi.org/10.22034/ijsom.2024.110346.3067
Notarnicola, I., Lommi, M., Ivziku, D., Carrodano, S., Rocco, G., & Stievano, A. (2024). The Nursing Theory of Complex Adaptive Systems: A New Paradigm for Nursing. Healthcare, 12(9), 1997. https://doi.org/10.3390/healthcare12191997
Olutimehin, D. O., Ofodile, O. C., Ejibe, I., Odunaiya, O. G., & Soyombo, O. T. (2024). The Role of Technology in Supply Chain Risk Management: Innovation and Challenges in Logistics. International Journal of Management & Entrepreneurship Research, 6(3), 878-889. https://doi.org/10.51594/ijmer.v6i3.941
Oncioiu, I., Bunget, O. C., M. C., Căpușneanu, S., Topor, D. I., Tamaș, A. S., Rakoș, I.-S., & Hint, M. Ș. (2019). The Impact of Big Data Analytics on Company Performance in Supply Chain Management. Sustainability, 11(18), 321-432. https://doi.org/10.3390/su11184864
Oriekhoe, O. I., Ashiwaju, B. I., Ihemereze, K. C., Ikwue, U., & Udeh, C. A. (2024). Blockchain Technology in Supply Chain Management: A Comprehensive Review. International Journal of Management & Entrepreneurship Research, 6(1), 150-166. https://doi.org/10.51594/ijmer.v6i1.714
Panigrahi, R. R., Jena, D., Meher, J. R., & Shrivastava, A. K. (2022). Assessing the impact of supply chain agility on operational performances-a PLS-SEM approach. Measuring Business Excellence, 6(1), 1-73. https://doi.org/0.1108/MBE-06-2021-0073
Panigrahi, R. R., Jena, D., Meher, J. R., & Shrivastava, A. K. (2023). Assessing the impact of supply chain agility on operational performances-a PLS-SEM approach. Measuring Business Excellence, 27(1), 1-24. https://doi.org/10.1108/MBE-06-2021-0073
Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(1), 1108-1118.
Parihar, A., Prajapati, J. B., Prajapati, B. G., Trambadiya, B., Thakkar, A., & Engineer, P. (2024). Role of IOT in healthcare: Applications, security & privacy concerns. Intelligent Pharmacy, 1(1), 132-231. https://doi.org/10.1016/j.ipha.2024.01.003
Pradhan, B., Bhattacharyya, S., & Pal, K. (2021). IoT-Based Applications in Healthcare Devices. Journal of Healthcare Engineering, 1(1), 1-18. https://doi.org/10.1155/2021/6632599
Prater, E. B., & Smith, M. A. (2001). International supply chain agility Tradeoffs between flexibility and uncertainty. International Journal of Operations and Production management, 9(2), 210-254.
Radomir, L., & Moisescu, O. I. (2019). Discriminant validity of the customer-based corporate reputation scale: Some causes for concern. Journal of Product & Brand Management, 29(4), 457-469.
Ramesh, T., & Santhi, V. (2020). Exploring big data analytics in health care. International Journal of Intelligent Networks, 1(1), 135-140. https://doi.org/10.1016/j.ijin.2020.11.003
Ramezankhani, M. J., Torabi, S. A., & Vahidi, F. (2018). Supply chain performance measurement and evaluation: a mixed sustainability and resilience approach. Computers & Industrial Engineering, 126(1), 531-548.
Ratnapalan, S., & Lang, D. (2019). Health Care Organizations as Complex Adaptive Systems. The Health Care Manager, 39(1), 1-15. https://doi.org/10.1097/HCM.0000000000000284
Ronen, B., Pliskin, J. S., & Pass, S. (2018). Principles of Management in the Dynamic Healthcare Environment. In The Hospital and Clinic Improvement Handbook: Using Lean and the Theory of Constraints for Better Healthcare Delivery (online ed., pp. 9-22). New York: Oxford Academic. https://doi.org/10.1093/med/9780190843458.003.0002
Rosário, A. T., & Dias, J. C. (2023). How has data-driven marketing evolved: Challenges and opportunities with emerging technologies. International Journal of Information Management Data Insights, 3(3), 100203. https://doi.org/10.1016/j.jjimei.2023.100203
Sabahi, S., & Parast, M. M. (2020). Firm innovation and supply chain resilience: a dynamic capability perspective. International Journal of Logistics Research and Applications, 23(3), 254-269.
Šajnović, U., Vošner, H. B., Završnik, J., Žlahtič, B., & Kokol, P. (2024). Internet of Things and Big Data Analytics in Preventive Healthcare: A Synthetic Review. Electronics, 13(18), 3642. https://doi.org/10.3390/electronics13183642
Santos, L. d., & Marques, L. (2022). Bigdataanalyticsforsupplychainriskmanagement: researchopportunitiesatprocesscrossroads. Business Process Management Journal, 28(4), 1117-1145. https://doi.org/10.1108/BPMJ-01-2022-0012
Singh, G. K., Dadhich, M., Chouhan, V., & Sharma, A. (2021). Impact of Big Data Analytics & Capabilities on Supply Chain Management (SCM) - An Analysis of Indian Cement Industry. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 313-318). Greater Noida, India: IEEE.
Susitha, E., Jayarathna, A., & Herath, H. M. (2024). Supply chain competitiveness through agility and digital technology: A bibliometric analysis. Supply Chain Analytics, 7(1), 100073. https://doi.org/10.1016/j.sca.2024.100073
Syahchari, D. H., Sudrajat, D., Saroso, H., Hartono, H., & Kreie, A. (2022). Moderating Effect of Supply Chain Complexity on Supply Chain Alignment and Resilience: A Study of Blockchain Applications on Logistics Service Providers. Proceedings of the 3rd South American International Industrial Engineering and Operations Management Conference, July 19-21, 2022 (pp. 1973-1975). Asuncion, Paraguay: IEOM Society International.
Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3(1), 100026. https://doi.org/10.1016/j.sca.2023.100026
Talukder, B., Schubert, J. E., Tofighi, M., Likongwe, P. J., Choi, E. Y., Mphepo, G. Y., Asgary, A., Bunch, M. J., Chiotha, S. S., Matthew, R., Sanders, B. F., Hipel, K. W., vanLoon, G. W., & Orbinski, J. (2024). Complex adaptive systems-based framework for modeling the health impacts of climate change. The Journal of Climate Change and Health, 15(1), 100292. https://doi.org/10.1016/j.joclim.2023.100292
Talwar, S., Kaur, P., Wamba, S. F., & Dhir, A. (2021). Big Data in operations and supply chain management: a systematic literature review and future research agenda. International Journal of Production Research, 59(11), 3509-3534. https://doi.org/10.1080/00207543.2020.1868599
Teo, M. Y., Ibrahim, H., Lin, C. K., Hamid, N. A., Govindasamy, R., Somasundaram, N., Lim, C., Goh, J. L., Zhou, Y., Tay, K. T., Ong, R. R., Tan, V., Toh, Y., & Pisupati, A. (2024). Mentoring as a complex adaptive system – a systematic scoping review of prevailing mentoring theories in medical education. BMC Medical Education, 34(1), 722-726. https://doi.org/10.1186/s12909-024-05707-5
Thacker, L. R. (2020). What Is the Big Deal About Populations in Research? Progress in Transplantation, 30(1), 1-3. https://doi.org/10.1177/1526924819893795
Thonemann, U. W., & Bradley, J. R. (2002). The effect of product variety on supply-chain performance. European Journal of Operational Research, 143(3), 548–569.
Trizano-Hermosilla, I., & Alvarado, J. M. (2016). Best alternatives to Cronbach’s alpha reliability in realistic conditions: Congeneric and asymmetrical measurements. Frontiers in Psychology, 7(1), 700-769.
Vollmann, T., Berry, W., Whybark, D. C., & Jacobs, R. (2005). Manufacturing Planning and Control for Supply Chain Management (5th ed.). New York: McGraw-Hill/Irwin.
Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222(1), 107-498. https://doi.org/10.1016/j.ijpe.2019.09.019
Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222(1), 107-498. https://doi.org/10.1016/j.ijpe.2019.09.019
Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: certain investigations for research and applications. International Journal of Production Economics, 176(1), 98-110.
Wu, Z., & Choi, T. Y. (2005). Supplier–supplier relationships in the buyer supplier triad: building theories from eight case studies. Journal of Operations Management, 24(1), 27–52.
Xie, C., Xu, X., Gong, Y., & Xiong, J. (2022). Big Data Analytics Capability and Business Alignment for Organizational Agility: A Fit Perspective. Journal of Global Information Management, 30(1), 1-27. https://doi.org/10.4018/JGIM.302915
Yamane, T. (1967). Statistics: An Introductory Analysis (2nd ed.). New York: Harper and Row.
Zhang, J., & Li, H. (2022). The Impact of Big Data Management Capabilities on the Performance of Manufacturing Firms in Asian Economy During COVID-19: The Mediating Role of Organizational Agility and Moderating Role of Information Technology Capability. Frontiers in Psychology, 13(1), 1-12. https://doi.org/10.3389/fpsyg.2022.833026
Zhu, M., & Gao, H. (2021). The antecedents of supply chain agility and their effect on business performance: an organizational strategy perspective. Operations Management Research, 14(1), 166–176. https://doi.org/10.1007/s12063-020-00174-9