Abbaspour Ghadim Bonab, A. (2022). A comparative study of demand forecasting based on machine learning methods with time series approach. Journal of applied research on industrial engineering, 9(3), 331-353.
https://doi.org/10.22105/jarie.2021.246283.1192
Azadeh, A., Ebrahimipour, V., & Bavar, P. (2010). A fuzzy inference system for pump failure diagnosis to improve maintenance process: The case of a petrochemical industry. Expert Systems with Applications, 37(1), 627-639.
https://doi.org/10.1016/j.eswa.2009.06.018
Deloux, E., Castanier, B., & Bérenguer, C. (2012). Environmental information adaptive condition-based maintenance policies. Structure and Infrastructure Engineering, 8(4), 373-382.
https://doi.org/10.1080/15732479.2011.563095
Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110, 104743.
https://doi.org/10.1016/j.engappai.2022.104743
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.
https://doi.org/10.1145/240455.240464
Ferreiro, S., Arnaiz, A., Sierra, B., & Irigoien, I. (2012). Application of Bayesian networks in prognostics for a new Integrated Vehicle Health Management concept. Expert Systems with Applications, 39(7), 6402-6418.
https://doi.org/10.1016/j.eswa.2011.12.027
Ghaffarian, H., & Bamohabbat, A. (2022). Classification and Prediction of Customer Categories Using Combination of LRFM Method, Quartiles and Multi-Class Data Mining Methods. Karafan Quarterly Scientific Journal.
https://doi.org/10.48301/kssa.2022.316104.1852
Gürbüz, F., Özbakir, L., & Yapici, H. (2011). Data mining and pre-processing application on component reports of an airline company in Turkey. Expert Systems with Applications, 38(6), 6618-6626.
https://doi.org/10.1016/j.eswa.2010.11.076
Huang, R. Y., & Chen, P. F. (2012). Analysis of influential factors and association rules for bridge deterioration using national bridge inventory data. Life-Cycle and Sustainability of Civil Infrastructure Systems: Proceedings of the Third International Symposium on Life-Cycle Civil Engineering (IALCCE’12), Vienna, Austria, October 3-6, 2012, 115.
https://doi.org/10.51400/2709-6998.1812
Kim, J., Ahn, Y., & Yeo, H. (2016). A comparative study of time-based maintenance and condition-based maintenance for optimal choice of maintenance policy. Structure and Infrastructure Engineering, 12(12), 1525-1536.
https://doi.org/10.1080/15732479.2016.1149871
Maquee, A., Shojaie, A. A., & Mosaddar, D. (2012). Clustering and association rules in analysing the efficiency of maintenance system of an urban bus network. International Journal of System Assurance Engineering and Management, 3(3), 175-183.
https://doi.org/10.1007/s13198-012-0121-x
Musah, L. (2025). Enhancing Supply Chain Performance and Agility in the Healthcare Industry Through Big Data Analytics: A Complex Adaptive Systems Theory Approach. Management Science and Information Technology, 2(1), 1-19.
https://doi.org/10.22034/ISS.2025.8740.1025
Moitra, A. K., Bhattacharya, J., Kayal, J. R., Mukerji, B., & Das, A. K. (Eds.). (2021). Innovative exploration methods for minerals, oil, gas, and groundwater for sustainable development. Elsevier.
https://doi.org/10.1016/C2020-0-00590-6
Namjooye, R. A. A., & Dadgarpour, M. (2021). Detection of network penetration by data mining and using machine learning via SVM algorithm.
https://sid.ir/paper/379238/en
Potharaju, S., Tirandasu, R. K., Tambe, S. N., Jadhav, D. B., Kumar, D. A., & Amiripalli, S. S. (2025). A two-step machine learning approach for predictive maintenance and anomaly detection in environmental sensor systems. MethodsX, 14, 103181.
https://doi.org/10.1016/j.mex.2025.103181
Shabtay, L., Fournier-Viger, P., Yaari, R., & Dattner, I. (2021). A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data. Information Sciences, 553, 353-375.
https://doi.org/10.1016/j.ins.2020.10.020
Sharma, V., Stranieri, A., Ugon, J., Vamplew, P., & Martin, L. (2017, May). An agile group aware process beyond CRISP-DM: a hospital data mining case study. In Proceedings of the International Conference on Compute and Data Analysis ,109-113.
https://doi.org/10.1145/3093241.309327
Tsallis, C., Papageorgas, P., Piromalis, D., & Munteanu, R. A. (2025). Application-Wise Review of Machine Learning-Based Predictive Maintenance: Trends, Challenges, and Future Directions. Applied Sciences, 15(9), 4898.
https://doi.org/10.3390/app15094898
Tounsi, Y., Anoun, H., & Hassouni, L. (2020, March). CSMAS: Improving multi-agent credit scoring system by integrating big data and the new generation of gradient boosting algorithms. In Proceedings of the 3rd international conference on networking, information systems & security,1-7.
https://doi.org/10.1145/3386723.338785
Xia, T., Jin, X., Xi, L., & Ni, J. (2015). Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling. European Journal of Operational Research, 240(3), 781-790.
https://doi.org/10.1016/j.ejor.2014.08.004
Xia, T., Jin, X., Xi, L., Zhang, Y., & Ni, J. (2015). Operating load based real-time rolling grey forecasting for machine health prognosis in dynamic maintenance schedule. Journal of Intelligent Manufacturing, 26(2), 269-280.
https://doi.org/10.1007/s10845-013-0780-8
Xia, T., Xi, L., Zhou, X., & Lee, J. (2013). Condition-based maintenance for intelligent monitored series system with independent machine failure modes. International Journal of Production Research, 51(15), 4585-4596.
https://doi.org/10.1080/00207543.2013.775524